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Abstract The inverse problem concerning electromag-
netic casting of molten metals consists of looking for
an electric current density distribution such that the
induced electromagnetic field makes a given mass of
liquid metal acquire a predefined shape. This prob-
lem is formulated here as an optimization problem
where the positions of a finite set of inductors are
the design variables. Two different formulations for
this optimization problem for the two-dimensional case
are proposed. The first one minimizes the difference
between the target and the equilibrium shapes while the
second approach minimizes the L2 norm of a fictitious
surface pressure that makes the target shape to be
in mechanical equilibrium. The optimization problems
are solved using Feasible Arc Interior Point Algorithm,
a line search interior-point algorithm for nonlinear
optimization. Some examples are presented to show the
effectiveness of the proposed approaches.
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1 Introduction

Electromagnetic Casting (EMC) and Magnetic Suspen-
sion Melt Processing are very important technologies in
the metallurgical industry. They make use of an elec-
tromagnetic field for contactless heating, shaping and
control of solidification of hot melts. Advantages of
these techniques are high surface quality, high clean-
ness, low contamination and near-net shape manufac-
turing. The ECM has primarily been employed for
containerless continuous casting but is mainly used
to prepare ingots of aluminum alloy (Zhiqiang et al.
2002). Another important application, extensively used
in aeronautics, astronautics, energy and chemical en-
gineering, is in the manufacturing of components
of engines made of superalloy materials (Ni,Ti,. . . )
(Fu et al. 2004).

These technologies are based on the repulsive forces
that an alternating electromagnetic field produces on
the surface of this kind of materials. This electro-
magnetic field is induced by an externally imposed
alternating current. Under suitable assumptions, the
mathematical model is described by a set of equations
expressing an equilibrium relation on the boundary be-
tween electromagnetic pressures and surface tensions,
as well as gravity forces in the three-dimensional prob-
lem. The boundary shape of the liquid metal such that
the equilibrium is attained can be found as the solution
of a nonlinear free surface problem, see Pierre and
Roche (1991, 1993) for details.

In this paper we study the electromagnetic shaping
of a vertically falling molten metal column with a mag-
netic field induced by a set of vertical electric wires.
Our problem consists of locating the wires in order to
have an horizontal cross-section of the molten metal as
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close as possible to a prescribed shape. Two different
approaches are proposed, the first one looks for a set of
inductors such that the distance between the computed
shape and the given target one is minimized. In the
second approach the error of the equilibrium equation
for the target shape is minimized.

Simultaneous Analysis and Design optimization,
SAND, is a formulation that includes the state variables
as unknowns of the mathematical program and the state
equations as equality constraints, see Haftka (1985),
Haftka and Kamat (1989), Arora and Wang (2004,
2005), Herskovits et al. (2005), Canelas et al. (2007).
In this paper we employ a SAND formulation for
both approaches and solve the optimization problems
employing the Feasible Arc Interior Point Algorithm
(FAIPA), a line search interior-point algorithm for
nonlinear optimization (Herskovits 1998; Herskovits
et al. 2005, 1996).

2 The mathematical model of the electromagnetic
shaping problem

The electromagnetic shaping problem studied here
concerns a vertical column of liquid metal falling down
into an electromagnetic field induced by vertical con-
ductors. We consider a model for high frequencies of
the imposed currents that assumes that the magnetic
field does not penetrate into the metal. Thus, the elec-
tromagnetic forces are reduced to the magnetic pres-
sure acting on the interface.

Let ω be the open and simply connected domain
in the horizontal plane occupied by the liquid metal,
Γ = ∂ω its boundary and Ω = R2 \ ω the exterior of
the liquid metal. The exterior magnetic field can be
found as the solution of the following boundary value
problem:

∇×B = µ0 j0 in Ω, (1)

∇ · B = 0 in Ω, (2)

B·ν = 0 on Γ, (3)

‖B‖ = O(‖x‖−1) as ‖x‖ → ∞ in Ω. (4)

Here the fields j0 = (0, 0, j0) and B = (B1, B2, 0) rep-
resent the mean square values of the current density
vector and the total magnetic field, respectively. The
constant µ0 is the vacuum permeability, ν the unit
normal vector to the boundary & and ‖ · ‖ denotes
the Euclidean norm. We assume that j0 has compact
support in Ω and satisfies:
∫

Ω

j0 dx = 0. (5)

On the other hand, the magnetic field produces a sur-
face pressure that acts on the liquid metal, changing the
shape until the equilibrium is attained. This equilibrium
is characterized by the following equation (Pierre and
Roche 1991, 1993):

1
2µ0

‖B‖2 + σC = p0 on Γ, (6)

where C is the curvature of Γ seen from the metal,
σ is the surface tension of the liquid and the constant
p0 is an unknown of the problem. Physically, p0 repre-
sents the difference between the internal and external
pressures. Since it is assumed that the molten metal is
incompressible, we have the following condition:
∫

ω

dx = S0, (7)

where S0 is given.
In the direct problem the electric current density j0 is

given and one needs to find the shape of ω that satisfies
(7) and such that the magnetic field Bω solution of
(1)–(4) satisfies also the equilibrium equation (6) for a
real constant p0.

Conditions (1)–(5), with the function j0 compactly
supported in Ω , imply that there exists a potential
function ϕ : Ω → R such that B = ( ∂ϕ

∂x2
, − ∂ϕ

∂x1
, 0) and ϕ

is the solution of:

−)ϕ = µ0 j0 in Ω,

ϕ = 0 on Γ,

ϕ(x) = O(1) as ‖x‖ → ∞. (8)

The equilibrium equation (6) in terms of the potential
ϕ becomes:

1
2µ0

‖∇ϕ‖2 + σC = p0 on Γ. (9)

The direct problem, in terms of the potential, con-
sists of looking for a domain ω such that the solution ϕω

of (8) satisfies (9) for a real constant p0.

2.1 The variational model of the direct problem

Under suitable assumptions, the equilibrium configu-
rations are given by the local stationary points with
respect to the domain of the following total energy:

E(ω) = − 1
2µ0

∫

Ω

‖∇ϕω‖2 dx + σ P(ω), (10)

subject to the equality constraint in the measure of ω:
∫

ω

dx = S0. (11)
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In (10), ϕω is the solution of (8) and P(ω) is the
perimeter of ω, i.e., the length of & = ∂ω when ∂ω is
regular enough (for instance of class C1):

P(ω) =
∫

Γ

dΓ , dΓ = length measure on Γ. (12)

The variational formulation of the direct problem
consists of finding the domain ω as a stationary point
of the total energy (10), subject to the constraint (11).
As ϕω is solution of (8), to prove that this variational
formulation is equivalent to the previous one it remains
to show that the equilibrium relation is automatically
ensured for all the stationary points.

Theorem 1 Let Ω be the complement of a compact set
ω in R2 with nonempty interior. Assume that Γ = ∂ω =
∂* is of class C2. Let V be in C1(R2, R2) with compact
support and

∀ x ∈ R2, Ttx = x + tV(x) = (I + tV)(x), (13)

Ωt = Tt(Ω), ∂Ωt = Tt(∂Ω) (t small enough). (14)

Finally, let j0 be a square integrable function from Ω

into R with compact support in Ω .
Then, for t small enough, there exists a unique solu-

tion ϕωt in C1(Ω t) (see Kress 1999 and Henrot and Pierre
1989) of:

−)ϕωt = µ0 j0 in Ωt,

ϕωt = 0 on ∂Ωt,

ϕωt(x) = O(1) as ‖x‖ → ∞. (15)

Moreover, if

E(ωt) = − 1
2µ0

∫

Ωt

‖∇ϕωt‖2 dx + σ P(ωt), (16)

then, for all p0 ∈ R:

d
dt

(
E(ωt) − p0 mes(ωt)

)∣∣∣∣
t=0

=

=
∫

Γ

(
1

2µ0
‖∇ϕωt‖2 + σC − p0

)
(V ·ν) dΓ , (17)

where ν is the unit normal to Γ oriented toward Ω .

Proof see Henrot and Pierre (1989), Pierre and Roche
(1991), Novruzi and Roche (1995). )*

This problem is very similar to some ones consid-
ered by several authors. We refer the readers to the
following papers and references therein for the physical

analysis of the simplifying assumptions that the above
model requires: see Brancher and Séro-Guillaume
(1985), Coulaud and Henrot (1994), Gagnoud et al.
(1986), Henrot and Pierre (1989), Henrot et al. (1989),
Moffatt (1985), Novruzi (1997), Novruzi and Roche
(1995, 2000), Pierre and Roche (1991, 1993), Roche
(1996, 1997), Séro-Guillaume et al. (1992), Sneyd and
Moffatt (1982), Zouaoui et al. (1990).

3 The inverse problem

The goal of the inverse problem is to find a distribution
of current around the liquid metal column so that it
attains a given shape.

Given the target shape ω∗, we want to compute j0
solution of the following optimization problem:

min
j0

d(ω, ω∗), (18)

where the function d is a distance between ω and ω∗.
The domain ω belongs to the set of admissible domains,
i.e., ω ∈ O , and is in equilibrium under the action of
the electric current density j0 in the variational sense.
In other words, ω satisfies the area constraint (11) and
the potential ϕω solution of (8) satisfies the equilibrium
equation (19) for a real constant p0:
∫

Γ

(
1

2µ0
‖∇ϕω‖2 + σC − p0

)
(V ·ν) dΓ = 0

∀ V in C1(R2, R2). (19)

From a practical point of view, the magnetic field has
to be created by a simple configuration of inductors. For
that purpose, we consider a distribution of the electric
current density j0 of the form:

j0 = I
m∑

p=1

αpδxp, (20)

where I is a given intensity of current, δxp , with 1 ≤
p ≤ m, are Dirac masses at points xp in the plane,
and αp are dimensionless coefficients. Then, the inverse
problem consists of determining the positions in the
plane of the points xp.

Remark 1 In certain cases it is possible to find a current
density distribution such that the target shape ω∗ is in
equilibrium. This topic was already studied and there
are a few papers about the existence of such solutions.
See Henrot and Pierre (1989), Felici and Brancher
(1991), Pierre and Rouy (1996).
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In the two-dimensional case, ω∗ is assumed simply
connected and its boundary is only one Jordan curve
Γ . Henrot and Pierre (1989), show that a solution of
(1), (2), (3), (4), and (6), with j0 compactly supported in
Ω can be found for each p0 satisfying:

p0 ≥ σ max
x∈Γ

C (x), (21)

That is, assuming j0 compactly supported in *, and
choosing p0 satisfying (21), then there exists B satisfy-
ing (1), (2), (3), (4), and (6) if an only if:

(i) Γ is an analytic curve.
(ii) If p0 is chosen satisfying the equality in (21),

the global maximum of the curvature must be
attained in an even number of points.

Moreover, the magnetic field is well determined in a
neighborhood of ω (local uniqueness).

Equation (5) is also obtained if p0 is chosen satisfy-
ing the equality in (21). A current density distribution
concentrated on a curve in Ω can always be found.
However, a solution given by the addition of a finite
number of Dirac masses is not always possible. See
Henrot and Pierre (1989).

3.1 Two approaches for the inverse problem

We propose two different approaches for finding an
approximate solution of problem (18). The first one
considers a domain deformation of ω∗ defined by the
mapping:

TZ (x) = x + Z (x), ∀ x ∈ R2, (22)

where Z is a regular vector field with compact support
in R2. Then, defining:

ωZ = TZ (ω∗),

ΓZ = TZ (Γ ∗).

The first inverse formulation is:

min
j0,Z

‖Z‖2
L2(Γ ∗),

subject to:

ωZ is in equilibrium under j0. (23)

A second formulation of the inverse problem can be
considered introducing a slack variable function p(x) :
Γ → R in order to make the equilibrium equation
satisfied for the target shape:
∫

Γ ∗

(
1

2µ0
‖∇ϕω‖2 + σC − p0 + p

)
(V ·ν) dΓ = 0

∀ V in C1(R2, R2). (24)

The function p can be understood as an additional
pressure acting on the interface. Given j0 and ω∗, p is
the surface pressure that equilibrates the action of the
magnetic pressure and the surface tension. The second
formulation for the inverse problem is an indirect ap-
proach that try to minimize the L2(Γ ∗) norm of the
function p:

min
j0,p

‖p‖2
L2(Γ ∗),

subject to:

ω∗ is in equilibrium under j0 and p. (25)

Remark 2 There are not shape variables in this formu-
lation. This fact makes (25) much easier to solve than
(23). If the function p vanishes at the solution of (25),
the resulting electric current density j0 will also be a
solution of the first formulation with the equilibrium
domain matching exactly the target shape. In the gen-
eral case, p will not vanish at the solution and, in this
case, the target shape ω∗ will not be in equilibrium
under j0 only. Then, a second stage of analysis will
be necessary to find the equilibrium domain under the
obtained current density distribution. However, as the
norm of p was minimized, the resultant equilibrium
domain is expected to be a good approximation of the
target one. Furthermore, since (25) can be solved with
a minor computational effort, its solution j0 can be
employed as an initial guess for the formulation (23).

4 Numerical method

4.1 The exterior Dirichlet problem

To solve (8) in the exterior domain Ω we consider
a particular solution ϕ1 of the differential equation
given by:

ϕ1(x) = − µ0

2π

∫

R2
ln ‖x − y‖ j0(y) dy. (26)

This function is a solution of the problem:

− )ϕ1(x) = µ0 j0 in R2, (27)

ϕ1(x) = O(1) as ‖x‖ → ∞. (28)

Note that for the current density distribution defined by
(20), the expression of ϕ1 is:

ϕ1(x) = I
m∑

p=1

αp ln ‖x − xp‖. (29)

The function ϕ can be computed as:

ϕ(x) = v(x) + ϕ1(x), (30)
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where the function v is the solution of the following
exterior problem:

−)v(x) = 0 in Ω,

v(x) = −ϕ1(x) on Γ,

‖v(x)‖ = O(1) as ‖x‖ → ∞. (31)

Following Kress (1999), an integral single layer repre-
sentation of the solution of (31) is given by:

v(x) = − 1
2π

∫

Γ

q(y) ln ‖x − y‖ dΓ + c, (32)

where the constant c is the value at the infinity of v and
the function q(y) ∈ H−1/2(Γ ) satisfies:
∫

Γ

q(y) dΓ = 0. (33)

It remains to impose the boundary conditions on Γ .
Here, this is done with a weak formulation. Let aΓ (q, g)

be the following elliptic bilinear form:

aΓ (q, g) = − 1
2π

∫

Γ

g(x)

∫

Γ

q(y) ln ‖x − y‖ dΓ dΓ +

+ c
∫

Γ

g(x) dΓ (34)

defined on H−1/2(Γ ) × H−1/2(Γ ). We look for a func-
tion q(y) ∈ H−1/2(Γ ) that satisfies (33) and:

aΓ (q, g) = −
∫

Γ

ϕ1(x)g(x) dΓ ∀ g ∈ H−1/2(Γ ). (35)

Finally, the norm ‖∇ϕ‖ in (19) can be computed as:

‖∇ϕ‖ =
∣∣∣∣
∂ϕ

∂ν

∣∣∣∣ =
∣∣∣∣
∂ϕ1

∂ν
+ ∂v

∂ν

∣∣∣∣ , (36)

where the first equality comes from the fact that ϕ

is constant on Γ , and the second one from (30). The
normal derivative of ϕ1 is obtained from (26):

∂ϕ1

∂νx
(x) = − µ0

2π

∫

R2

∂

∂νx
ln ‖x − y‖ j0(y) dy. (37)

The following expression can be used for v:

∂v

∂νx
(x) = − 1

2π

∫

Γ

q(y)
∂

∂νx
ln ‖x − y‖ dΓ

+ 1
2

q(x) ∀ x ∈ Γ, (38)

where the integral of (38) is understood in the Cauchy
principal value sense.

4.2 The SAND formulation of the inverse problems

A SAND formulation of the inverse problems (23)
and (25) is employed here. In other words, the state
variables p0, c and q are incorporated as unknowns of
the optimization problem and the state and equilibrium
equations are incorporated as equality constraints. The
optimization problem of the formulation (23) becomes:

min
j0,Z ,p0,c,q

‖Z‖2
L2(Γ ∗), (39)

subject to the area constraint:

∫

ωZ

dx = S0, (40)

the state equations:

aΓZ (q, g)=−
∫

ΓZ

ϕ1(x)g(x) dΓ ∀ g∈ H−1/2(ΓZ ), (41)

∫

ΓZ

q(y) dΓ = 0, (42)

and the equilibrium equation:

∫

ΓZ

(
1

2µ0
‖∇ϕ‖2 + σC − p0

)
(V ·ν) dΓ = 0

∀ V in C1(R2, R2), (43)

where ϕ1, ϕ, and v are given by (26), (30) and (32).
The optimization problem of the formulation (25)

becomes:

min
j0,p,p0,c,q

‖p‖2
L2(Γ ∗), (44)

subject to the state equations:

aΓ ∗(q, g) =−
∫

Γ ∗
ϕ1(x)g(x) dΓ ∀ g∈ H−1/2(Γ ∗), (45)

∫

Γ ∗
q(y) dΓ = 0, (46)

and the equilibrium equation:

∫

Γ ∗

(
1

2µ0
‖∇ϕ‖2 + σC − p0 + p

)
(V ·ν) dΓ = 0

∀ V in C1(R2, R2). (47)
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4.3 The numerical model

4.3.1 Discretization of the domain

We consider an approximation of the domain ω∗ de-
fined by the piecewise linear closed boundary Γ h,
i.e., Γ h is the union of the n linear finite elements . j

in R2, j ∈ {1, . . . , n}. The nodes of the boundary Γ h are
denoted by xi.

A direction Ẑ i ∈ R2 is associated to each vertex xi of
Γ h. We construct a continuous piecewise linear vector
field Z i from Γ h in R2 such that Z i(xk) = δik Ẑ i. The
support of Z i is equal to the union of the finite elements
for which xi is a node. The vector field Z of (22) is
computed as:

Z (x) =
n∑

i=1

ui Z i(x), (48)

and the updated boundary Γu is then given by:

Γu =
{

X | X = x + Z (x); ui ∈ R, x ∈ &h} , (49)

where uT = (u1, . . . , un) ∈ Rn is the vector of unknowns
which determine the evolution of the boundary. This
representation has the advantage of defining only one
degree of freedom for each node. We denote by ωu
the interior domain related to Γu in order to show the
dependence with respect to the vector u.

4.3.2 Exterior boundary value problem

For numerical calculations we consider a piecewise
constant approximation qh(x) of q(x):

qh(x) =
n∑

j=1

q je j(x), (50)

where e j(x) = 1 if x ∈ . j and zero elsewhere.
Replacing the function g in (41) by ei, with i ∈

{1, . . . , n}, the weak formulation of the boundary value
problem, given by equations (41) and (42), becomes:

A(u)q = b(up, u), (51)

where the vector qT = (q1, . . . , qn, c) is in Rn+1, u is the
vector of shape variables and up is the vector that con-
tains the coordinates of the positions of the inductors,

i.e. the coordinates of the points xp with p ∈ {1, . . . , m}.
The coefficients aij of the symmetric matrix A(u) are:

aij(u) = − 1
2π

∫

.i

∫

. j

ln ‖x − y‖ dΓ dΓ i, j ∈ {1, . . . , n},

(52)

aij(u) =
∫

. j

dΓ i = n + 1, and j ∈ {1, . . . , n},

(53)

and the components bi of the vector b are:

bi(up, u) = −
∫

.i

ϕ1(x) dΓ i ∈ {1, . . . , n}, (54)

bi(up, u) = 0 i = n + 1, (55)

a

b

Fig. 1 Example 1a, configuration of inductors, a initial distribu-
tion, b final distribution. Solid line: equilibrium shape, dash-dot
line: target shape, plus: positive current, circle: negative current
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Remark 3 For given vectors u and up, the linear system
(51) is symmetric and non-sparse. Numerical approxi-
mations of the element integrals of previous and later
equations are computed by Gauss quadrature.

Remark 4 If q is the solution of the system (33), (35)
and the piecewise constant approximation qh given by
the solution of (51), then we have the following error
bounds, see Nédélec (1977):

‖q − qh‖H−1/2(Γ ) ≤ C1h‖q‖H1(Γ ), (56)

and if vh is the approximation of (32) then
∥∥∥∥
∂v

∂ν
− ∂vh

∂ν

∥∥∥∥
H−1/2(Γ )

≤ C2h‖q‖H1(Γ ). (57)
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Fig. 2 Example 1a, evolution of the objective functions, a first
formulation, b second formulation

Remark 5 The approximation of the normal derivative
∂v

∂ν
at xl ∈ .l is given by:

∂vh

∂ν
(xl) = − 1

2π

n∑

i=1
i .=l

qi

K∑

m=1

pm
∂ ln ‖xl − xi(sm)‖

∂ν
+ 1

2
ql,

(58)

where xi(sm) are the integration points and pm

the weights of the Gauss quadrature formula. Thus,

the computation of
∂vh

∂ν
(xl) needs O(n) floating point

operations.

4.3.3 Equilibrium equation

Consider a direction V̂i ∈ R2 associated to each vertex
xi of Γ h and the continuous piecewise linear vector

a

b

Fig. 3 Example 1b, configuration of inductors and final shape,
a first formulation, b second formulation. Solid line: equilibrium
shape, dash-dot line: target shape, plus: positive current, circle:
negative current
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field Vi from Γ h in R2 such that Vi(xk) = δikV̂i. If we
project the equation (43) in the finite dimensional space
generated by Vi, i ∈ {1, . . . , n} the discrete version of
the equilibrium is now the following:

DEi(up, u, q, p0) =
∫

Γu

(
1

2µ0
‖∇ϕ‖2− p0

)
(Vi ·ν) dΓ +

+ σC i ·V̂i, (59)

where i ∈ {1, . . . , n} and C i is an approximation of the
mean curvature at xi, given by:

C i =
(

(xi − xi−1)

‖xi − xi−1‖
− (xi+1 − xi)

‖xi+1 − xi‖

)
. (60)

The gradient ∇ϕ is computed using (36), (37) and (38).
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Fig. 4 Example 1b, evolution of the objective functions, a first
formulation, b second formulation

In the case of equation (47), we consider a piecewise
linear function ph defined as:

ph(x) =
n∑

i=1

pi fi, (61)

where the function fi satisfies fi(xk) = δik. Then, de-
fining pT = (p1, . . . , pn), the equilibrium equation is
defined as:

DFi(up, p, q, p0)= 1
2µ0

∫

Γ ∗

(
‖∇ϕ‖2− p0+ ph

)
(Vi ·ν) dΓ+

+ σC i ·V̂i. (62)

4.4 Discretized inverse problems

Let the area function be S(u) =
∫
ωu

dx, and DE(up, u,

q, p0) the vector function such that (DE)i = DEi(up,

a

b

Fig. 5 Example 2a, configuration of inductors, a initial distribu-
tion, b final distribution. Solid line: equilibrium shape, dash-dot
line: target shape, plus: positive current, circle: negative current
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u, q, p0). The discretized version of the first inverse
problem is the following:

min
up,u,q,p0

‖Z‖2
L2(Γ ∗), (63)

subject to the nonlinear equality constraints:



A(u)q − b(up, u)

S(u) − S0

DE(up, u, q, p0)



 = 0. (64)

The discretized version of the second inverse prob-
lem is:

min
up,q,c,p0

‖p‖2
L2(Γ ∗), (65)

with the constraint:
(

Aq − b(up)

DF(up, p, q, p0)

)
= 0. (66)
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Fig. 6 Example 2a, evolution of the objective functions, a first
formulation, b second formulation

In this case, since the integrals are defined on the fixed
domain Γ ∗ the vector u of shape variables is not present
in the formulation.

5 Numerical examples

We consider seven examples to illustrate the behavior
of the proposed formulations of the inverse problem.
The goal is to identify the position of the inductors
given by the points xp of equation (20). The shape and
the surface S0 of the target shape, the surface tension
σ , the intensity I and the dimensionless coefficients αp

are given. The initial values of the state variables q and
p0, the shape variable u of the first formulation and the
pressure p of the second one are set equal to zero for
all the examples.

For the solution of the optimization problems, the
line search interior-point algorithm for nonlinear con-
strained optimization problems FAIPA was employed.

a

b

Fig. 7 Example 2b, configuration of inductors and final shape,
a first formulation, b second formulation. Solid line: equilibrium
shape, dash-dot line: target shape, plus: positive current, circle:
negative current



398 A. Canelas et al.

For a given feasible point with respect to the inequal-
ity constrains, FAIPA defines a feasible and descent
arc solving three linear systems of equations with the
same coefficient matrix. Then, it performs a line search
along this arc to define the next iterate. FAIPA makes
subsequent iterations until a certain convergence cri-
terion is satisfied. For more details about FAIPA see
Herskovits (1998), Herskovits et al. (2005, 1996). Some
box constraints were applied to the variables related
to the inductor positions to prevent the inductors from
penetrating the liquid metal or going to infinite. Box
constraints can be included easily and are handled effi-
ciently by FAIPA.

For each example we plot the initial position of the
inductors, the initial shape, the final shape and the
evolution of the objective function during the iterative
process.
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Fig. 8 Example 2b, evolution of the objective functions, a first
formulation, b second formulation

5.1 Example 1a

In the first example we consider four inductors and
a target shape of area S0 equal to π . The intensity I
is equal to 0.1 and the surface tension σ is equal to
1.0 × 10−4. The dimensionless coefficients αp have
absolute value equal to 1.0 with the sign given by Fig. 1.

For validation purposes, the target shape considered
in this example is the solution of the direct free-surface
problem for known positions of the inductors. After the
free-surface analysis, we consider the obtained shape as
the target one for the inverse problem and perturb the
position of the inductors. Then, the two formulations
of the inverse problem have known solutions with zero
value of the objective function.

Figure 1a depicts the initial positions of the induc-
tors and the target shape. The final positions of the
inductors are shown by Fig. 1b. In this example both
formulations give the same positions for the inductors
coinciding with the known solution.

Figure 2 shows the evolution of the objective func-
tion during the iterative process. The objective func-
tions of both formulations vanish in the beginning due
to the choice of the initial values of vectors u and
p. Then, as the equality constraints are not satisfied,
the expected behavior in the initial iterations is to
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Fig. 9 Examples 2c1 to 2c6, target shape and initial configuration
of inductors. 1: Example 2c1, 2: Example 2c2, 3: Example 2c3, 4:
Example 2c4, 5: Example 2c5, 6: Example 2c6. Dash-dot line: tar-
get shape, plus: positive current, circle: negative current, square:
position of the inductor at the solution
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Table 1 Summary of results

aF1: first formulation,
F2: second formulation.
bResult for the objective
function of the first
formulation.

Examplea Nodes Inductors Iterations Objectiveb

Ex1a - F1 72 4 27 2.403e-013
Ex1a - F2 72 4 24 1.785e-017
Ex1b - F1 72 4 19 6.745e-003
Ex1b - F2 72 4 21 2.261e-002
Ex2a - F1 120 4 20 2.181e-013
Ex2a - F2 120 4 35 2.889e-015
Ex2b - F1 120 4 20 3.020e-002
Ex2b - F2 120 4 27 8.831e-002
Ex2c1 - F1 120 4 31 9.695e-014
Ex2c2 - F1 120 4 24 2.257e-014
Ex2c3 - F1 120 4 37 9.402e-014
Ex2c4 - F1 120 4 34 2.335e-013
Ex2c5 - F1 120 4 Fail –
Ex2c6 - F1 120 4 Fail –
Ex2c1 - F2 120 4 28 7.999e-015
Ex2c2 - F2 120 4 31 3.955e-016
Ex2c3 - F2 120 4 27 3.314e-015
Ex2c4 - F2 120 4 30 8.384e-015
Ex2c5 - F2 120 4 38 6.908e-013
Ex2c6 - F2 120 4 110 1.895e-014
Ex3 - F1 136 36 400 1.102e-004
Ex3 - F2 136 36 192 3.206e-003
Ex4 - F1 152 48 400 6.192e-003
Ex4 - F2 152 48 400 1.713e+000

increase the value of the objective function. After some
iterations the values of the objective function reach a
maximum and decrease in subsequent iterations. At
the end of the iterative process the objective function
reaches the optimum value and the equality constraints
are satisfied.

5.2 Example 1b

In the second example we change only the intensity
value to I = 0.04. This new value is smaller than the
one used in the previous example. Then, the inductors
will locate closer to the liquid metal than in Example 1a.
Using the first formulation the algorithm does not find
the exact target shape and using the second one it does
not obtain the equilibrium. That means, probably, that

Fig. 10 Example 3, target shape and initial configuration of
inductors

the target shape is not exactly shapable for a current
distribution of the form given by (20).

Figure 3a shows the obtained shape and the positions
of the inductors using the first formulation. Figure 3b
depicts the same employing the second formulation.

a

b

Fig. 11 Example 3, final configuration of inductors and final
shape, a first formulation, b second formulation. Solid line: equi-
librium shape, dash-dot line: target shape, plus: positive current,
circle: negative current
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The equilibrium shape in Fig. 3b represents the solution
of the direct free-surface problem for the obtained con-
figuration of inductors. Figure 4 shows the evolution of
the objective function throughout the iterative process.

5.3 Example 2a

In this example, as in Example 1a, the target shape
is the solution of a given direct problem for the same
configuration of inductors but for an intensity factor
I = 0.2. As in the Example 1a the obtained positions
of the inductors match exactly the known ones. Figure 5
portrays the initial configuration of inductors, the target
shape and the results for both formulations. Figure 6
shows the evolution of the objective function through-
out the optimization process.
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Fig. 12 Example 3, evolution of the objective functions, a first
formulation, b second formulation

5.4 Example 2b

Here we change only the intensity value to I = 0.1. As
this value is smaller than the considered before, the
final positions of the inductors are closer to the liquid
metal than in Example 2a. Like in Example 1b the
first formulation does not obtain the target shape and
the second one does not equilibrate exactly the target
shape. Again, the target shape is probably not shapable
for the distribution of electric current in the form given
by (20).

Figure 7 shows the obtained results for this example.
The evolution of the objective function throughout the
iterative process is shown by Fig. 8.

5.5 Examples 2c1 to 2c6

In this example we consider the same parameters and
target shape of the Example 2a. Six configurations for
the initial positions of the inductors are considered to
investigate the stability of the proposed formulations,
see Fig. 9. For these examples, the initial inductors were
located around the initial configuration of Example 2a.
In the case of the Example 2c1 the inductors were
located closer to the liquid metal than the Example
2a and also closer than the known solution. Examples
2c4 to 2c6 present initial inductors farther to the liquid
metal than Example 2a. Table 1 shows that for Ex-
amples 2c1 to 2c4 both formulations converges to the
known solution shown by Fig. 9 in a similar number of
iterations. In examples 2c5 to 2c6 convergence to the
solution is achieved only for the second formulation.

Fig. 13 Example 4, Target shape and initial configuration of
inductors
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5.6 Example 3

In this example we want to obtain a distribution of
inductors in order to build a bar with rectangular cross-
section. We consider thirty-six inductors and a surface
S0 equal to 4.98. The intensity is I = 0.075 and the
surface tension σ is equal to 1.0 × 10−4. The coefficients
αp = ±1 with the sign given by Fig. 10.

Figure 11 portrays the obtained positions of the
inductors for the two formulations of the inverse prob-
lem. The equilibrium shape in the Fig. 11b represents

a

b

Fig. 14 Example 4, final distribution of inductors and final shape,
a first formulation, b second formulation. Solid line: equilibrium
shape, dash-dot line: target shape, plus: positive current, circle:
negative current

the solution of the direct free-surface problem for the
obtained configuration of inductors. Figure 12 shows
the evolution of the objective function throughout the
iterative process.

5.7 Example 4

This final example considers forty-eight inductors and
the target shape of surface S0 equal to 30.0 shown by
Fig. 13. The intensity factor is I = 0.03 and the surface
tension is σ = 1.0 × 10−4. The coefficients αp = ±1,
with the sign given by Fig. 13.

Figure 14 depicts the obtained position of the in-
ductors employing the two formulations of the inverse
problem. Figure 15 shows the evolution of the objective
functions during the optimization process.

Table 1 resumes the information about the consi-
dered examples. For each one we give the number of
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Fig. 15 Example 4, evolution of the objective functions, a first
formulation, b second formulation
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nodes used for the finite element approximation of
the boundary Γ ∗ of the target shape, the number of
inductors, the number of iterations performed by the
optimization algorithm and the final value of the ob-
jective function. Table 1 shows that the total number
of iterations is similar for both formulations in all the
examples except for Example 4 for which the number of
required iterations by the first formulation was smaller
than the required by the second one. For comparison
purposes, the value of the objective function of the first
formulation is given in Table 1. As one could expect,
the first formulation shows smaller values of the objec-
tive function in all the examples. The main advantage
of the second formulation is that it gives similar results
than the first one with a smaller computational cost
since no variables related to the shape are present.

6 Conclusions

This paper studies an inverse problem concerning elec-
tromagnetic shaping of molten metals. Two different
approaches based on nonlinear optimization has been
proposed in order to find the positions of a suitable
finite set of inductors for the two-dimensional case: the
first one minimizes the difference between the geome-
tries of the best possible equilibrium domain and the
target shape; the second formulation minimizes a slack
variable function related to the equilibrium equation on
the target boundary.

The finite dimensional optimization problems ob-
tained after discretization were solved employing the
line search interior-point algorithm FAIPA.

Some presented examples show that both formula-
tions are suitable for finding appropriate positions for
the inductors. The main comments about them are: The
first formulation found the best solutions in the entire
set of examples. The second one leads to a simpler
and less time consuming computation of the function
derivatives because of the lack of shape variables. As
it found relatively good results, this last formulation
appear to be attractive for finding a first workable
solution that can, if necessary, be improved in a later
process employing it as an initial guess for the first
formulation.
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