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Computation of free surfaces
in the electromagnetic shaping
of liquid metals by optimization algorithms

M. PIERRE * and J.-R. ROCHE *

ABSTRACT. — We describe a numerical method to compute free Fsurfaces in the electromagnetic shaping of
liquid metals. It is based on an energetic variational formulation for the equilibrium so that optimization
algorithms of a quasi-Newton type are used like the so-called, BFGS method. The elliptic problem in an
exterior domain involved in the computation of the gradient with respect to the domain at each step is solved

by a boundary integral representation. Several examples are given for the case of a vertical column of molten
metal.

1. Introduction

There are several engineering processes where the free surface of a moiten metal is
shaped by electromagnetic forces. The control of these surfaces leads to various math-
ematical questions and requires numerical simulation. Often the computation of the free
boundary amounts to solving an “optimal design” problem where the functional to be -
optimized is the total energy of the phenomenon under consideration. As such the
numerical question is very general and has a wide range of applications. Therefore it is
of interest to develop corresponding algorithms of a general nature.

Our goal here is to develop numerical methods to compute the free surfaces in the
electromagnetic shaping of molten metals by optimization techniques. Although our
approach extends to 3-dimensional situations, we will restrict ourselves to a 2-dimensional
model since its actual 3-d implementation is still in progress. It concerns the case of a
vertical column of liquid metal falling down in an electromagnetic field created by vertical
conductors. We assume the frequency of the imposed current is very high so that the
magnetic field does not penetrate into the metal and the electromagnetic forces are
reduced to the magnetic pressure acting on the interface. Moreover, we assume that a

stationary horizontal section is reached so that the following simple 2-dimensional model
is valid.

* U.R.A.-C.N.RS. n° 750, Projet NUMATH, I.N.R.I.A. Lorraine, Université de Nancy-I, Departement de
Mathématiques, B.P. n° 239, 54506 Vandceuvre, France.
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. We denote by Q the exterior in thc plane of the closed and snmply connected domain

" occupled:» by thc metal "Wé deal w1th fhe mean squarg, g,@lues of the relevant quantities:

= (0 0, Jo) denz@tes the densxty current veotor; B= (B B, 0) is the total magnetic field.

2) ””V*‘B—‘(") in Q

a3 - e B.a=0 on =00,
(1.4) |B|2/2po+c%—constant onT,
- (L.5) o |B|=0(x|7?) as|x|->wo inQ

where p, is the vacuum permeability, n the unit normal vector to the boundary I', € the
curvature of I' (seen from the metal), o the surface tension of the liquid and | . | denotes
the euclidian norm. The constant in (1.4) is an unknown of the problem. Obviously the
boundary I' is also unknown. >

This problem or very similar ones have .been considered in several places in the
literature. We refer the reader to the following papers and to references in them for
the physical analysis of the simplifying assumptions that the above model requires:
see ([Shercliff, 1981]; [Sero-Guillaume, 1983]; [Brancher & Sero-Guillaume, 1983]; [Sneyd
& Moffatt, 1982]; [Brancher et al., 1983]; [Gagnoud et al., 1986}; [Mestel, 1982]; [Etay
et al., 1988]).

Our purpose is to describe an algorithm to compute the free boundary I" based on an
equivalent variational formulation of (1.1)-(1.5) involving the total energy. This kind of
equivalence can be found in several places in the literature since Bernoulli conditions
Tlike (1.4) often appear in hydrodynamic problems and: various fluid problems; let us refer
for instance to [S, 1983] where a large class of liquid ‘metal equilibria is considered and

also [Zolésio, 1983] for fluid problems and [Zolésio, 1990] for a survey with many
references.

Numerical computations of shapes in particular situations and with different methods
can also be found in ([S, 1981]; [Gagnoud & Sero-Guillaume, 1986]; [Coulaud &
Henrot, 1990]; [Etay, 1982]; [Li & Evans, 1989]). Our approach here is very general and
allows us to handle any kind of distribution j, and any value of the surface tension.
This flexibility arises from the choice of sophisticated optimization algorithms which, in

particular, dot not require any a priori symmetry assumption on the data. Moreover, the
method carries over to other problems (see e. g. Sec. 5).

2. The variational formulation

Conditions (1.2), (1.3) imply that B=(¢,, —9,, 0) where ¢: Q — R. The total energy
can be written in terms of @ and Q as

@.1) E(Q)=——2-—l— [Vo[*+oP@)

Ho Jo
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where P(Q) is the perimeter of Q, i.e. the length of 4Q when 0Q is regular enough (for
instance of class C') and can be written as

P(Q)= J dr, dl’ =length measure on I"=0Q,
a0

and @ is the solution of (see (1.1), (1.3), (1.5))

(2.2) —AQ=y,jp in Q,
(2.3) =0 onT,
24 P(x)=0(x|"") as |x|> .

Condition (1.3) implies that ¢ is constant on I'; we normalize it to zero.

The wvariational formulation of (1.1)-(1.5) consists of considering the equilibrium
domain Q as a stationary point for the functional (2.1), where Q is the variable, under
the constraint that m(°“Q) be imposed (“Q=complément of Q, m=Lebesgue measure
in R?). This point of view is summarized next.

THEOREM 2.1. — Let Q be the complement of a compact set in R? with nonempty interior.
Assume that 6Q is of class C*. Let V be in C* (R2, R?) with compact support and

(2.5) VxeR?, T,x=x+tV(x),

(2.6) Q,=T,(Q), 0Q,=T,(0Q) (¢ small enough).

Finally let j, be a square integrable function from Q into R with compact support in Q.
Then, for ¢ small enough, there exists a unique solution o(x, 1) of

2.7 =D, 0 (x, D=pojo(x) in Q,

2.8) @(x, )=0 on 9Q, e(N)=0(x|™") as|x|- 0.

Moreover, if
(2.9) E(Q,)=———1-— f Ve (x, )] dx+aP(Q,),
2po Jo
then for all P,eR:

(2.10) g-(E(ﬂ,)—Pom(ﬂ.)) |:=o=j
t N

(—-L |V(p]2+c(€-—Po) V.n
2po

where n is the unit normal derivative to 6Q oriented towards Q.

Remark

Differentiation with respect to the domain is classical in the literature. Very similar
results can be found for instance in the above mentioned papers (S, 1989]; [Z, 1984].
See also [Descloux, 1990]). A complete proof under precisely the above regularity assup-
tions is given in [Pierre & Roche, 1990]. It is not reproduced here. Definitions and
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. s ¢ - e m CE, B e

e.ysf;pr'oﬁl'em (1.1)-(1.5)

e e -~

; @y e - —-(E(Q,)" nm(Q))I: o=0.

. ‘ " Note that computing this derivative for a given Q requires the solution of a boundary
value problem in an extenor domam This makes the numerical approach highly non-
© trivial. ‘

3. The discretization and the algorithm "
. .
The discretization consists of constructing a sequence (I, *, Z¥) where I'* is a
piecewise linear closed Jordan curve, ¥* is an approximation of the solution of
3. ~A*=p,yj, on Q*=exterior of I'*,
(3.2) =0, - ¢*(M)=0(x|™") ‘as |x|~ oo,

-and Z* is a vector field defining the direction of displacement of the nodes of I'*.
A These are moved according to a perturbed gra.dleut algonthm for the penalized mapping:-

(33) . QmE,@= E(Q)+u(m(“!2) So)2

where S, is the prescribed area and p a positive number, large enough so that the
solution Q satisfies the constraint m (“Q)=S§, as well as possible.

Let us introduce some notation. By I'*, we mean the piecewise linear Jordan curve
with n edges [xf, xf, ], i=1, ..., n-and x,,=x%. With I'* is associated a vector field
Z*=(Z¥;-,, ... ,and for ueR", we denote by I'* the perturbed curve whose vertices are

(34 {xf+u,Z¥; i=1, ..., n} (definition of I'¥),

We denote by Qf the exterior of I't. The corresponding energy is defined as
¢35 B@=—5 [ |VotP+oP@)+nimea-s?
2po Jak

where @f is the solution of

(3.6) ‘ { —Aq)u P«ojo in Qz
=0 on I'f, of(x)=0(|x|") as |x[—>oo
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Similarly to (2.10), we have a formula for the gradient of the above discretized energy
(see [P &R, 1990] for a detailed proof). Here we write ¢* for ¥ and Q* for Q.

ProrosiTioN 3.1. — Under the above assumptions

7} 1 v
6D EEWheo= g [ Ivoptmar

(xk xf - x{"+1'—x§
|xf=xta| x|

).Zf+2u(m(°ﬂk)—so)f (Z*.n)dr*
r*

where Z¥ is the piecewise linear vector field on T* such that
i

(3.8) Zi(=0 if j#Ai, ZER)=2Zk

Remark ~

Note that Z¥ is supported by [x*_,, XU [x, x*,5] so that the above integrals on I'*
can be replaced by integrals on [x¥_;, x¥1 U [x¥, x, 1.

A pure gradient algorithm would now consist in setting

39 [k+i=rk
where, for an appropriately chosen p > 0:

(3.10) -—-—piE |us =0 i=1,...,n
Ju; v

i

We modify this in two ways. First the gradient is not exactly computed as in (3.7).
Indeed, it would require the knowledge of the exact solution ¢* of (3.6) at ©=0. This
problem is itself discretized and an approximate solution ¥* of ¢* is computed as
indicated in the next section. The gradient is modified accordingly: since |V ¢* |=(V ¢*.n)
on I'%, it is natural to replace (3.7) by

xf xft _ xf-‘H—xﬂ-‘) k
|db—xboy | b =]/

3.11) DE"——J (V*.n)? (Z5. n)dl""+0'<

+2u(m Q) —S,) f (Z . nydr*.
rk

We denote by DEY, the vector with components D, EL i=1, ..., n

Next, the gradient algorithm with constant path turns out to be rather slow. Conse-
quently, a more efficient method is chosen, namely the so-called BFGS quasi-Newton
algorithm named after its authors Broyden, Fletcher, Goldfarb, Shanno who indepen-
dently introduced it at about the same time (1969-1970) (see for instance [Minoux, 1983]
for details about it). For this we choose intermediate steps k, <k, < ... <k, <.
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Then for all p 2 1 we fix p,e(0, 1], Z” e (R?)" and we set

(3.12) H*»=Identity in R",  Z*»=2ZP.

For k=k,to k,.,—1:

(3.13) u"= -p HkDE"[see(3.11)],
4 ”

(3.14) Pt iopl  Zktiogh

(3.15) y=DE*!~DEL,

B e P

| A R ey ’

where g*="‘y*=transpose of v*, v*="44.

Remark ~

The main property of this algorithm is that*under suitable assumptions, the matrices
H* “converge” to (V2E)~* and (3.12)-(3.16) is now almost the usual Newton’s method.

Note that the field of displacement is kept constant from k, to k, ., [see (3.14)]. It is

renewed each time [see (3.12)]. In actual computations, various choices have been made
for Z? such as:

— ZP=Z'=constant for star-shaped domains;

— ZP=approximate normal to I'*» (Z? bisecting the angle of the i-th vertex). Different
choices for Z” do not seem to change the computed equilibrium shapes as long as they
reasonably “fit” their geometry. This is consistent with the fact that displacements of
continuous curves can be similarly represented by x+— x+u(x)Z(x) where Z is any
reasonable field. We have also included the possibility of progressively increasing the
number of points: this allows the acceleration of the first few iterations (by starting with
less points) and also adds more points in the regions where they are needed.

4. Compatation of the approximate solution "

A knowledge of ¥* is necessary for the computation of the approximate gradient of E,.
As shown by (3.11), we actually only need to know V y* at the boundary. Therefore, 1t
is natural to choose a boundary integral representation for *.

For this, we first introduce the function

@.1) 0()=—2 | 1n|x—p|jp()dy+ 2o in|x| f Jo(»)dy.
2n Jg2 2w r2
Since
4.2 —A8=yoj, in R%,  O(x)=0(x|™Y) as|x|- oo,
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the problem (3.6) with u=0 is equivalent to:

3) @ =64+0,

@.4) ~A®*=0 in O

4.5) : ¢*=—0 on I'*,

- (4.6) e )=0(x|"") as |x|— co.

Note that the second term in the definition of 9 is needed for (4.6) to hold. It is well-
known (see e. g. [Nedelec, 1977]) that 6* can be represented by

4.7 VxeQ UT*, 9"(x)=—2LJ‘ q(»)n|x—y|dy,
© J

where the unknown function g is defined implicitly by the system (4.5), (4.7). This system'
_is discretized using a finite element representation for the approximation ¢* of . We
introduce the basis {e}};., . , where ¢ is piecewise constant on I'* and defined by

., 1, if xelx, x,., ]
4.8 Vi, j=1,...,n: éx={ . b
“38) hJ " 1 () { 0 otherwise.

Then, ¢* is obtained as ¢*= n; s where (n%);., ., eR"is solution of the discretized
i=1
version of (4.5), (4.7), namely

(4.9).j ef(x){—l—f q"(y)lnlx-—y|dy}dx=J g(x)0(x)dx, i=1,... n
r* 2n J *

This is a nX n linear system with matrice Ak=[ak), ;.. ., where
4.10) dhy= f @) 0)n | x—y| dedy.
27 Jpkxrk

Once ¢* is obtained, the approximate solution § of 6* is given by formula (4.7) with 4
replaced by ¢* and 6* by 8. Actually, only the gradient of 8 on I'* is needed. Indeed,
the approximate gradient DE} is computed according to (3.11) where

Vi . n=V0.n+Vd¥.n
and [see (4.7)]

véf.n=-—2if V. (n|x~y)).ndy.
T e

Important remark

Actual computations will be made for given current densities Jo which are the sum of
Dirac masses (case of vertical wires). It is well-known that the total energy is then
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unbounded. Nevertheless, the variational approach described above is valid since all the
gradients involved are given by well-defined integrals at the boundary. Moreover, all the
singularities are actually contained in the function 8 which is subtracted from the solution
[see (4.1)-(4.3)].

5. The “interior” shaping problem

As announced in the introduction, our numerical approach is general and carries over
to a large class of problems. To illustrate this, we give below numerical results for a
model of the so-called “interior” shaping of liquid metals where the inductors are placed
inside the liquid and the liquid confined in a bounded area: this could correspond to the
shaping of a hollow tube (see the contributions by M. Crouzeix and J. Descloux in this
volume). The variational problem is the same except that Q is bounded and m(Q)
prescribed so that the only change is in the gign in front of the first term in the

approximate gradient DEY (3.11) due to the change of sign in the normal derivative.
. .

6. The results

The figures 1-8 which are presented next are examples of shapes which have been
computed using the algorithm described in previous sections. In each case the surface
tension o and the surface S, of the liquid are given in addition to the distribution of
current j, which is of the form

m
j0=( Z czps:c,,)l
1

p=

where I is a given intensity of current, (8+)p=1,....m the Dirac masses at the points
(X,)p=1,....m in the plane and o, adimensional coefficients which are directly indicated
on the figures. Computations are made with the normalized energy

I lv¢|2+AP(Q),
Q

where
A=20/p, %, _<?>=¢/Mo L
Tables I and II indicate for each figure the values of A; the surface S, and

m=number of masses,
n=number of points used to represent Q,

iter=the number of iterations in the algorithm.

In each case, the starting curve is a circle with surface S,.
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TaBLE I. — “Exterior” shaping problems.

Figure n° A So m n iter
1 0.007 3.1415 4 128 277
2 1. 2. 6 64 171
3 1. 4. 12 128 179
4 0.01 4. 12 128 249
2. ~ 2. r
t
i
1.5 1-'0 -2 1.5 &
W10 ’i' 4.0 o0
1. F
1
1
[}
1
L
|
g
L caefia g 02
-2, -1.5 -1, 1. 1.5 2 5
1
- v
1
t
t
1.k -1,k
§ PR +—.4.o o 10
~1.5 402 -1.5E—
I §
t 1
H 1
-2. - -2. L
Fig. 1. ~ Four Dirac masses. Fig. 2. — Six Dirac masses.
2. :-
* * ! ny "

——— e

Tt Y A0 IR WHOP N ESUURN YUY S, WU R

Fig. 3. — Twelve Dirac masses, A=1.

Fig. 4. — Twelve Dirac masses, A =0.01.
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TABLE II. — “Interior” shaping problems.

Figure n° A So m n iter
5 1. 1. 2 128 122
6 0.001 1. 4 64 46
7 0.01 1. 4 84 70
8 0.01 1. 4 84 76
1. -
1
I
!
t
1
0.5 & -
i
) .
| _ <,
L Tt % UEUUPU IO FPET '

Fig. 5. — Two interior Dirac masses.

Fig. 6. — Five interior Dirac masses.

Fig. 7. — Four interior Dirac masses, n=64. Fig. 8. — Four interior Dirac masses, n= [28,
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Table I and Figures 1-4 are “exterior” shaping examples. The first one is classical and
enables a comparison of our results with those obtained by different methods ([S, 1981];
[C& H, 1990]). The 171 iterations necessary in example 2 requires 9 seconds on a
SUN 4/60. Examples 3 and 4 correspond to the same distribution of mass with o, =+ 1
but with ¢ 100 times smaller in example 4. This explains the irregularity of the curve.
Note that the curves have not been smoothed out. They are the atual piecewise linear
curves obtained in the computation.

Table IT and Figures 5-8 are “interior shaping” examples. Computations are faster in
that case and very small surface tension can be handled. The last two examples are the
same apart from a difference in the number # of nodes used in the representation of Q.

The stability of equilibrium is under study. Some negative results in that direction can
be found in [D, 1990] in the case of zero surface tension. Obviously, our optimization
algorithms require at least a “numerical” stability. However, since it is based on a quasi-
‘Newton method, it could reach stationary points which are not local minima and
therefore not stable in an “energetical’” sense. Note that the “interior” shaping problem
leads to faster and more “stable” algorithms: this is consistent with the analysis in
[D, 1990]. ',
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