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Summary. We describe a numerical method to compute free surfaces in electro-

magnetic shaping and levitation of liquid metals. We use an energetic variational
formulation and optimization tech

niques to compute a critical point. The sur-
faces are represented by piecewise linear finite elements. Each step of the algo-

rithm requires solving an elliptic boundary value problem in the exterior of

the intermediate surfaces. This is done by using an integral representation on
these surfaces.
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1. Introduction

Our goal is to develop numerical method to compute free surfaces in electromag-
netic shaping and levitation of liquid metals. We introduce quasi-Newton optimi-

zation techniques in an energetic variational formulation framework.
In the two-dimensional case a numerical simulation has been developed
[2, 4, 5, 10, 16, 17, 20, 25]. The physical model concerns the case of a vertical

column of liquid metal falling down in an electromagnetic field created by verti-
cal conductors.

The same model in the tridimensional case represents a bubble of liquid
metal levitating in an electromagne

tic field. We want to compute the shape
of the bubble [3, 11-14]. We assume the frequency of the imposed current
is very high so that the magnetic field does not penetrate into the metal and
the electromagnetic forces are reduced to the magnetic pressure acting on the
interface.

We denote by w the exterior in R3

of the domain filled by the liquid metal
and by I' its boundary (here a surface).

Correspondence to: M. Pierre
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Under above assumptions, the surface I' is characterized b

y the following
equilibrium equations:

(1.1) VAB=puyj, inw
(1.2) V-B=0 inw
(1.3) B-n=0 on'=dw
1B _
(1.4) 2 +068+4+pgz=P onl
0

where ji, is the current density, B the magnetic field, u, the magnetic permeability,
p the density of the charge, g the gravitational acceleration, z the height, ¥
the mean curvature of I', ¢ the surface tension and n the unit normal vector
directed towards w. The constant P is an unknown of the problem. We denote
by 2="°w the complement of w.

The total energy of the system is given by [3, 9, 26, 28]
—1
(1.5) E(Q)=—2—- fIBI*dx+o §dy+ { pgzdx
Ho 4 r o

where B is solution of (1.1)-(1.3). With some usual hypotheses, a critical point
of E(Q2) under the constraint that meas (Q) be given, satisfies the nonlinear
equilibrium relation (1.4) which characterizes the boundary I.

A quasi-Newton optimization method is used here to compute a critical
point of the total energy Q-» E(Q). This means that one must compute the
gradient of E with respect to  at each iteration. The main part of the gradient
computation is solving the exterior problem (1.1)«1.3) for each intermediate
domain ©,. For this we introduce a boundary integral representation on the
surface I;=0%,. This is quite convenient here since the computation of the
gradient of E requires only the values of the magnetic field on the surface I;.
The computation is done by using a piecewise linear approximation of Q. The
energy (1.5) is replaced by a corresponding discretized energy. Details are given

in Sect. 4. The derivatives with respect to Q of the various terms in E(Q) are
recalled in Sect. 3.

2. Computing the magnetic field B

Let us consider the problem (1.1)(1.3). Let @ be an open subset of R3. We
set [6, 23]
(2.1) W (w) the closure of D(c@) for the semi-norm
¢~ Vol L(w)
W?(w) the closure of D (@) for the semi-norm

o=y
ij

0%¢
~110x;0x;

2 (@)
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Throughout this paper, we assume that:

(2.2) @ =complement of an open set Q with boundary ' =0Q =0 w
of class C? and w is simply connected

Then it is well known that ¢ — |V L) iS @ norm in W'(w) [6]. We also
introduce:

(2.3) Joe(IZ R?)? with compact support and V- j, =0 in 9’ (R3).
Lemma 2.1. There exists a unique solution B of the Jollowing differential system:
(24.a) BeW!'(w)?
24.b VAB=pu,j inw
2.4) ( ) HoJo .
(24.c) V-B=0 inw
(24.d) B-n=0 onI’

Moreover, if we set :

Bo ¢ JoW)A(x—y)
25 B (x)=Fo | JoWAXY)
23) AT Ry P LR
then
(2.6) VAB =pigjo, V-B,=0 inR?
2.7) B=B,+Vop inw

where @ is the unique solution of -

(2.8.2) peW?(w)
(2.8) (2.8.b) —Ap=0 inw
(2.8.¢) 92= —B,-n  onT.
an

Proof. Let B, be defined by (2.5). Since

1 (x—y) ,
Velix 51 "o 204 Vydo()=0,
(llx—yll) lx—yl3 an yJo(y)

we have by differentiating (2.5)

2.9) V A B, (%) ={{% f

R3

1 .
VeV ) o0V oo
2.10) V-B,(x)=0.

If B, (¢) denotes the Fourier transform of B, in R3, as VA B, and V- B, belong
to IZ(R?3), we have:

(2.11) ¢AB(Oel? and ¢&-B, (O)elr
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But:

(2.12) 1A B O+ (& B, (&) =11€)12 | B, ©))12.
Thus V- B, belongs to I? which means:

(2.13) B, (W' (R?)>.

If we set B,=B—B,, (2.9), (2.10), (2.13) imply that problem (2.4) is equivalent
to: ’

(2.14.a3) B,e(W'(w))®

(2.14.b) ' VAB,=0 inw
(2.14.c) , V-B,=0 inw
(2.14.d) B,-m=—B,-n onT.

Since o is simply connected and dw regular, we have [6, 23]
(2.15) (B.e(W' (@), V A B, =0)>(B, =V ¢, pe W?(w)).

Therefore (2.14) is equivalent to (2.8) where

(2.16) B,-neH'™(I, { B,-ndy=0,
r

But the problem (2.8) has a unique solution [6]. This solution can be repre-
sented by a single layer representation [1, 19].

Lemma 2.2. The solution of the problem (2.8) is given by:

(2.17) 0=z | 2y

where q is the unique solution on HY/2(I) of:

_1 1 n(x)-(x—y)
(2.18) B,-n= 5 ‘I(x)'l-41c :'! Q(Y)de(y}

Remark 2.3. Extension to the case where Jo is a sum of Dirac masses: If Jo
is a compactly supported distribution on rather than a function f belonging
to (C(R?)% the relation (2.5) defines a distribution over R® belonging to
W (&\Supp jo).

The problem (2.4), except for (2.4.a), can be solved according to (2.7) and

(2.8) with B,-n and ¢ as regular as before, The local regularity of B depends

on j, but is the same as previously (and then the same as the regularity of
B,) in a neighborhood of dw.

This remark is essential since numerical ex

amples are given for distributions
concentrated on wires (i.c. thin sets).




Tridimensional electromagnetic 207

3. Variational formulation of the shape optimization problem

We recall here classical results similar to those in [27, 29-31], [25] for the
two-dimensional case. We first introduce some notations.

Let @ be an open subset of R? such that 2=°@® and let ¥ be a compactly
supported vector field of class C2 over R? that is:

(3.1) VeC?(R3R3?), Vhascompactsupportin R3.

We consider transformations of £2 (or w) given by:

3.2) ’ VxeR?® T (x)=x+tV(x).

Then we set Q,=T;(£2), w,= T;(w) and we verify that I, T(I‘) 02, for t small

enough (since D, T;(x)=I+t DV(x) and thanks to the local inversion theorem).

Given 0>0 and G(x)e Wl (R3,R), with each w, (or ,) we associate the
energy:

(3.3) E(w)=Ey(w,)+oP(R2,)+ I G(x)dx
2

with '

(3.4) Eo(w)= —Ziuo 1182 x

where B, is a solution of the problem (2.4) with w, instead of w and P(Q,)

is the perimeter of £,. Recall that the perimeter of an open subset @ of R?>
is defined by:

(3.5 P(O)=sup{{V e, ®Ds m3yxa®y)> PEDMR?3), @]l < 1}
with y, the characteristic function of @ defined by:

1 ifxe®
(36) Xo(x)= {0 otherwise

and

"‘P"co*—sul’{z (P:(x)z} ’ (P=((pl’ srey (pN)

xeR3

If 00 is regular enough then P(0) is the surface area of 90.

Lemma 3.1. The functions t — E, (w,), P(Q,), _f G(x)dx are differentiable at 0
and we have: .

d 1 2
3.7 -‘Tt-lmo Eo(w:)—mrf B, *(V-nm)dy

63) & P@)=few-nay
1= r



208 M. Pierre and J.R. Roche

where € is the mean curvature of T.

(3.9) di § Gx)dx=[ Gx)(V-n)dy.
t r

t=0 o,

A sketch of the proof. This kind of computations are classical (see for example

[21, 26, 27, 30, 31] and [16] for relevant results concerning regularity of bound-
aries). We recall here some essential steps.

We start with the following classical formula: if g is a sufficiently regular
function from [0, ] xw on R:

610 gl Tsendy-1 X, Ndy= [ 80,001 dr0)

(here n is always the umt normal directed towards w). It can be obtained by
an elementary change of variable y = T;(x), namely:

(3.11) | gt ydy= | g(t, y+tV(y) det(I +¢D Y(y)dy.
Then, by differentiation and integration by parts we obtain:

d ]
612 | [eydy=] (a—f(o, N+, 80,3)- V() +8(0,) V- V(v)) dy

=0 g, ©
og
=1 30,9 dy— | g0, 0)(V-m) dy(y).
[ r

If we apply (3.12) to g(t, x)= G(x) and £, instead of w, we obtain (3.9). Applying
(3.12) to g(t, x) =B, (x)||?, we obtain:

d
(3.13) N § 1By ()2 dx
£=0 ¢,
0
=2 [ B 2| Buddx— [ IBLOI(V-n) dy0)
© = r
By (2.7), we have:
(3.19) B, =B, +V(p(t,-),56~| B, =V.0,0,:).
tli=o
Then
0
} Bm—(ﬂ B, dx={ B, V.00, )dx= ~ (B, -n)p,dy— { 0. V-B,dx=0,
® t=0 o r o

the last equality coming from (2.4).
The formula (3.8) is classical [29, 31].
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Proposition 3.2. We denote by V(2,) the volume of £,. Under the hypotheses (2.2),

(3.1), the functions t—E(w,), V(R,) are differentiable at t=0 and for every P
constant we have:

d

T R U
ﬂ,=o(E(w') PV(Q'»_,!(Z,;O"B“’" +064+G p)(V ) dy.

Then (B,,, ) is a solution of the equilibrium system (1.1)«1.4) if and only if there
exists P such that for every direction V satisfying (3.1) we have:

(3.16) di (E(w)—PV(2,)=0.
’ tl=o

This immediatly follows from Lemma 3.1 and Proposition 3.2. A conse-
quence is that the solution of (1.1)(1.4) can be considered as a critical point

of the total energy w — E(w) under the constraint V()= V, (with some regularity
hypothesis). ,

This property is the heart of our numerical approach.

4. Algorithm and discretization

The algorithm consists in constructing a sequence (I'*, B, Z%, k=1, ..., n where
[18]:
I'* is an approximation of the surface I" at the k-th iteration of the algorithm.

It is the union of triangles T, in R3, #/=1, ..., L. Each triangle is parametrized
by a reference triangle of coordinates ¢ and 7.

The nodes of the T, triangles are denoted by x*!; x%2; x%3, so that if
xeT,

3
(4.1) x=x(&,n)=Y x''N(&n)

i=1
4.2) NGm=1=¢—n; Ny(Em=&;  Ny(&m)=n.

If I'* is the boundary of the exterior domain g, then B*

is an approximate
solution of:

4.3) VAB=y,-j, ine*
V-B=0 in w*
B-n=0 on I'*

Z5=(2"%), ;< is the vector field which gives the direction of the displace-
ment at each node of I'. The vectors 2**¢R3 are associated with the displace-
ments Z"* which are piecewise linear and related to each knot &; by the formula:

ik AT . oy
(4.4) Zi.k(x)z{z‘ Ni(&,n) if xeT,. and E=xfieT,
0 otherwise.
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At each iteration, a new surface I'**! is constructed from I by (see [6] for
a similar approach):

4.5) r*‘uy=cX=x+Y u; Z*(x), u,cR, er"‘}.

i=0
Then, to update the admissible surface I'**! we compute u=(u,, ..., u)eR"
Moreover, the natural energy associated with I'*(u) is:

“8) Bw=ar [ IBI*dy+o | dy+pg | xdy
Ko k) ) Q%(u)
where Q*(u), w*(u) are respectively the inside and the outside of I'(u) and B,
is the solution of (4.3) where w*(u) replaces w*. Here the gravity term is given
by G(x)=pgx,. In fact, B} is a numerical approximation of B,.
We take into account the constraint on the volume of 2*(u) by a penalty
method. Then the penalized energy is the following:

@.7) ES() = E*()+ (¥ ()~ Vo)?

with V(u) the volume of Q*(u) and V,, given.

A critical point of this penalized energy is computed by a quasi-Newton
B.F.G.S. optimization technique [7, 8, 15, 22, 24]. At each iteration we must
compute the gradient with respect to u of the energy at u=0. We denote this
gradient by DE;=(D; E);_,, . The derivatives D, E¥ are given by the following
lemma which is a discrete version of Lemma 3.1.

Lemma 4.1. For i=1, ..., n we have:

1 .
@48) DiEr= 35— [ |BI*(Z"*n)lx{Axil dédn

{¢.Teag) 70 T,

+pg | X(ZH - mxEaxqll dEdn+a | (IxE12 IxE)2 —(x- xE)?)~ 172
T, T,

(00 Zg) gl +(cg - Zy ) 6N — xf % (xE - Zi* + x§- ZE9) d & dy
+r(e—Vo) [ (Z"*-mlxf A xbl dEdy
T,

where T, is the reference triangle (coordinates ¢ and 1), B the solution of problem
(4.3), x° =x(&, 1) an arbitrary point of T, (parametrized by (4.1)), x£, x¢ the vector
derivatives of x* wr. to ¢ and y, Zt*, Z%* the vector derivatives of Z"% w.r.
to & and n, V the volume of * (inside of I'*).

All these integrals are calculated exactly except the first one; to compute
this integral one must know the value of the magnetic vector field B. This

imply the resolution of the exterior problem (4.3). This is the most time consum-
ing step of the algorithm.

5. Computation of an approximation of || B}j2 over I'*

The computation of the gradient DE¥ requires the values of B* solution of:
V A Bk = I.lo jo in wk
V-B*=0 in w*
B* - n=0 on ¥,
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We write B*=B, + B with B, given by (2.5) so that B%=B*—B, is solution
of:

(5.1) VABS=0 ino*

V-B,=0 in w*

Bi-n=—B,-n onrI*

As explained in Sect. 2, we have B%(x)=V, ¢*(x) where ¢* is the scalar potential
solution of the following Neumann exterior problem:

5.2 Ap*= in w*
do* .
= —B,'n onr

@ ()=0(xII""), IV, ") =0(lIxl|~2) as [|x]| ~ co.
As we need to evaluate V, ¢*(x) only on I'*, we choose an integral representation
of the solution [6, 23, 30]:
1 1
53 k X)=— —d
(53) #0=7z [ 10) 57 470)

where g is the solution of the following boundary integral equation over I'*
(see (2.17), (2.18)):

_qx) 1 n,-(x—y)
(5.4) Bl(x)'n"T"'E;r{ @)Wd)’()’)-

To solve this second kind Fredholm integral equation, we use a Galerkin method

[6, 19, 23]. We introduce a basis {e}};., , where e} is piecewise constant
over I that is:

1 if xeT; Vj=1, ..., L(L: the number of triangles over I'")
ef(x)= . .
0  otherwise

Then the solution q of (5.4) is now approximated by:

L
¢0)=X e
i=1

(5.6) (Dk+H")C'*=/k§C‘k=(c'j‘)j=1.....z.
(5.7 D* =, )ij=1 and Hk=(hf.j)il:i=l
where
58) Bimoe 202D 4y aye)
T2m g g Ix—yl3
X _{0 if i%j
UL dyx)  if i=j
Ti

(5.9 =2 § By(x)-n;dy(x).
Ty
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The matrix of the system is full and not symmetric. The coefficients A, are
equal to zero as m;-(x —y)=0. Then we can compute hf; by a Newton-Cotes
method. Computation of the coefficient ¢, strongly depends on B, (x). It requires
numerical quadrature of the expression (2.5).

Finally, computing || B*(x)|2= || B, (x)+ V, ¢*(x)||? implies the evaluation of
V.. 9*(x) which is given by:

(5.10) \'A (p"(x)=4—1£ f ¢ V,(W;_Ify—")dr(y)-
Fad

This is clearly a singular integral as the kernel is v, (——-L—) which has a

llx—yli
singularity of order 2. As ¢* is a constant on each triangle T;, this integral
is a linear combinatin of elementary integrals like:

§ V(g 5p)

which are computed at the barycenter of each triangle T;. Only the integral

where T;=T; is singular. Integrating by parts reduces the problem to a simple
integral over 97T;.

6. Numerical results

We write the energy (1.5) as:
6.1) E(Q)=B, | |B|?dQ+o [} dr+B, { zdQ
[} r o

where the constants B, ¢ and B, are given various values.

6.a. Some extra information on the actual computation

We slightly modify the algorithm described in Sect. 4 in order to improve the
efficiency and reduce the computing time.

For instance, we start with a coarse grid to obtain a first rough approximation
of the free surface. Once the coarse approximation in calculated, we use a refine-
ment technique to work on a finer mesh. The displacement direction vector
field Z; associated with each knot ¢; is modified at each iteration. New directions
are obtained using the normalized average of the normal vectors to the triangles
in the neighbourhood of the &; node. The linear systems are solved by a minimal
residual algorithm.

The code was vectorized for a CRAY II computer. Indeed, in the boundary
integral representation method, one of the most costly parts is the evaluation
of the coeficients of the linear system matrix (5.6). In this section of the algorithm,
we compute hf; (see (5.8)), that is to say a double integral over each pair of
triangles T;, T;. The vectorisation of this part of the algorithm provided a signifi-
cant improvement and reduced the global time by five. The C.P.U. time for

a gradient evaluation in a CRAY 1I computer in a case of 480 finite elements
is about two seconds.
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We do not have much control on the number of iterations since we do not
really use any one-dimensional optimization strategy to optimize the line search
in the quasi-Newton method. Indeed this would require lengthly evaluations
of the magnetic field far from the free surface. We chose to allow more iterations.
More analysis is now being made to improve this point.

6.b. The examples

We now present six different examples; in all cases we start with a sphere and
a mesh of 480 finite elements.

In Fig. 1 we present two views of a bubble where the magnetic field B is created
by three wires with a symmetric configuration. We do not take into account
the potential energy due to the gravity as B,=0. Numerical convergence is

obtained after 168 gradient evaluations (sec remark above) and the final number
of finite elements is 736.

Fig. 1. —B,=1; B;=0; ¢=0.1; kel =736 and icount= 168

In Fig. 2 the magnetic field B is created by seven wires, the configuration is
also symmetric. Here we take into account the gravity since B, =0.1. Numerical

convergence is obtained after 186 gradient evaluations and the number of finite
elements is 576.

1

-

Fig.2. —B,=1; B,=0.1; 6=1; kel =576 and icount =186
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In Fig. 3 the magnetic field B is created by seven wires, but now the configuration
is not symmetric. The free surface obtained is clearly not symmetric either.
Here we take into account the gravity since B,=0.1. Numerical convergence

is obtained after 208 gradient evaluations and the number of finite elements
is 576.

In Fig. 4 the magnetic field B is created by the same seven wires as in the
previous example but here the sense of the current has been changed in the
two wires on the top. Numerical convergence is obtained after icount=156
evaluations of the gradient and the number of finite elements kel is 608.

-

Fig. 4. — B, =1.0; B,=0.1; 6 =0.1; kel =608 and icount = 156
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In Fig. 5 the magnetic field B is created by only one wire which turns around

the liquid metal bubble. The factor of the energy due to the magnetic field

B, is 50. Numerical convergence is obtained after 248 evaluations of the gradient
and with 544 finite elements '

AN,
oI
b ol W
N S EIREESS
RUSSISEISSISN
Nl SEISTSD
T e NS
N T VLY

)

Fig. 5. —B,=50.0; B,=0.1; 6 =0.1; kel = 544 and icount = 248

In Fig. 6 we present the same example as before but now B, is 100. We observe
that the position of the liquid metal bubble is not the same, Convergence is
obtained in 240 evaluations of the gradient and with 480 finite elements.

Fig. 6. — B, =100.0; B,=0.1; 6=0.1; kel =480 and icount = 240
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