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Abstract The design of inductors in electromagnetic
shaping of molten metals consists in looking for the
position and the shape of a set of electric wires such that
the induced electromagnetic field makes a given mass of
liquid metal acquire a predefined shape. In this paper
we formulate an inverse optimization problem where
the position and shape of the inductors are defined by
a set of design variables. In a first formulation of the
inverse optimization problem we minimize the differ-
ence between the target and the equilibrium shapes
while in a second approach we minimize the L2 norm
of a fictitious surface pressure that makes the target
shape to be in mechanical equilibrium. Geometric con-
straints that prevent the inductors from penetrating
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the liquid metal are considered in both formulations.
The optimization problems are solved using FAIPA, a
line search interior-point algorithm for nonlinear op-
timization. Some examples are presented to show the
effectiveness of the proposed approaches.
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1 Introduction

Electromagnetic Casting (EMC) and Magnetic Suspen-
sion Melt Processing (MSMP) are important technolo-
gies in the metallurgical industry. They are based on
the repulsive forces that an alternating electromagnetic
field produces on the surface of diamagnetic liquid met-
als. They make use of the electromagnetic field for con-
tactless heating, shaping and control of solidification
of hot melts. The EMC has primarily been employed
for containerless continuous casting but is mainly
used to prepare ingots of aluminum alloy (Zhiqiang
et al. 2002). Another important application, extensively
used in aeronautics, astronautics, energy and chemical
engineering, is in the manufacturing of components
of engines made of superalloy materials (Ni,Ti,. . . )
(Fu et al. 2004). Advantages of these techniques are
to produce components with high surface quality, high
cleanness and low contamination.

The EMC problem studied here concerns the case
of a vertical column of liquid metal falling down into
an electromagnetic field created by vertical inductors.
In Fig. 1 the horizontal cross-section of the inductors is
represented by the domains Θp, 1 ≤ p ≤ 4, the cross-
section of the liquid metal is ω, Γ is its boundary, and
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Fig. 1 EMC problem

the exterior of ω is represented in the figure by Ω .
Given the position and shape of the inductors, the mag-
netic field created by them produces a surface pressure
on the vertical column of liquid metal. That surface
pressure forces the liquid metal to change its shape
until an equilibrium relation on the boundary between
the electromagnetic pressures and surface tensions is
satisfied. The boundary shape of the liquid metal such
that the equilibrium is attained can be found as the
solution of a nonlinear free-surface problem, see Pierre
and Roche (1991, 1993) for details. Our purpose is
to design suitable inductors such that the equilibrium
shape of the liquid metal be as close as possible to a
given target shape.

In a previous work we studied this EMC problem
considering the case where the inductors are made of
single solid-core wires with a negligible area of the
cross-section (Canelas et al. 2008). Thus, the inductors
were represented by points in the horizontal plane. In
this paper we consider the more realistic case where
each inductor is a set of bundled insulated strands. In
this case we represent the inductors by a set of domains
in the plane as described by Fig. 1. The electric current
density is assumed uniform on the entire cross-section
of the inductor. This is a very reasonable approximation
for the case where the inductors are made up of mul-
tiple individually insulated strands twisted or woven
together.

Our goal is to determine the position and shape of
the domains Θp in order to have a horizontal cross-
section of the molten metal as close as possible to the
prescribed shape. For this purpose we consider two
different approaches based on the proposed in Canelas
et al. (2008). The first one minimizes a distance between
the computed shape and the given target one. The

second approach minimizes the error of the equilibrium
equation for the target shape.

In addition, here we introduce a new technique to
consider geometric constraints that prevent the induc-
tors from penetrating the liquid metal. These con-
straints are more suitable that the box constraints
considered in Canelas et al. (2008) making the con-
sidered formulations more effective and robust for the
solution of the EMC problem.

In this paper we employ a SAND formulation for
both approaches and solve the optimization prob-
lems employing the Feasible Arc Interior Point Algo-
rithm, FAIPA, a line search interior-point algorithm for
nonlinear optimization. See (Haftka 1985; Haftka and
Kamat 1989; Arora and Wang 2004, 2005; Yi et al.
2008) for a general discussion of the SAND formula-
tion, (Achtziger 2007; Herskovits et al. 2005; Canelas
et al. 2007, 2008) for some other issues and applications
and (Herskovits 1998; Herskovits et al. 1996, 2005) for
details about FAIPA.

The following notations are used throughout this
paper:

B = (B1, B2, 0) magnetic field,
J = (0, 0, J) electric current density,
µ0 magnetic permeability of the

vacuum,
ω cross-section of the liquid metal,
Ω = R2 \ ω exterior of the liquid metal,
Γ = ∂ω liquid metal boundary,
ν outward unit normal vector of Γ ,
C curvature of Γ ,
σ surface tension of the liquid metal,
p0 difference between internal and

external pressures,
S0 area of ω,
ϕ magnetic flux function,
E(ω) total energy of ω,
P(ω) perimeter of ω,
m number of inductors,
Θp, 1 ≤ p ≤ m cross-section of the inductor p,
χΘp characteristic function of Θp,
I reference value of the electric

current density,
αp, 1 ≤ p ≤ m dimensionless electric current

densities,
W1,∞(R2, R2) set of the Lipschitz functions from

R2 to R2 such that φ and ∇φ are
uniformly bounded,

V, Z maps in W1,∞(R2, R2),
Id identity map in W1,∞(R2, R2),
ωV , (ΩV , ΓV) perturbed domain (Id + V)(ω),
ω∗, (Ω∗, Γ ∗) target shape,
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ωZ , (ΩZ , ΓZ ) perturbed domain (Id + Z )(ω∗),
Γ h piecewise approximation of Γ ∗,
u vector of shape parameters of the

liquid metal boundary,
Γu liquid metal boundary for the

vector u,
up vector of shape parameters of the

inductors,
q = (q1, . . . qn, c) vector of variables of the dis-

cretized state equations,
p = (p1, . . . pn) vector of nodal fictitious pressures,
ψ function that defines the geometric

constraints.

2 The mathematical model of the electromagnetic
shaping problem

We assume that the frequency of the imposed cur-
rent is very high so that the magnetic field does not
penetrate into the metal. Moreover, we assume that
a stationary horizontal section is reached so that the
two-dimensional model is valid. The equilibrium of the
system is insured by the static balance on the surface
of the metal between the surface tension and the elec-
tromagnetic pressure. This problem and other similar
ones have been considered by several authors, we refer
the reader to the following papers for the physical
analysis of the simplifying assumptions that the above
model requires: see (Brancher and Séro-Guillaume
1985; Gagnoud et al. 1986; Henrot and Pierre 1989;
Moffatt 1985; Novruzi and Roche 1995; Pierre and
Roche 1991; Shercliff 1981).

The exterior magnetic field can be found as the
solution of the following boundary value problem:

∇×B = µ0J in Ω, (1)

∇ · B = 0 in Ω, (2)

B·ν = 0 on Γ, (3)

‖B(x)‖ = O(‖x‖−1) as ‖x‖ → ∞ in Ω. (4)

Here the fields J = (0, 0, J) and B = (B1, B2, 0) rep-
resent the mean square values of the current density
vector and the total magnetic field, respectively. The
constant µ0 is the vacuum permeability, ν the unit
normal vector of the boundary Γ and ‖ · ‖ denotes
the Euclidean norm. We assume that J has compact
support in Ω and satisfies:

∫

Ω

J dx = 0. (5)

On the other hand, the magnetic field produces a sur-
face pressure that acts on the liquid metal, changing the
shape until the equilibrium is attained. This equilibrium
is characterized by the following equation (Pierre and
Roche 1991, 1993):

1
2µ0

‖B‖2 + σC = p0 on Γ, (6)

where C is the curvature of Γ seen from the metal,
σ is the surface tension of the liquid and the constant
p0 is an unknown of the problem. Physically, p0 repre-
sents the difference between the internal and external
pressures. Since it is assumed that the molten metal is
incompressible, we have the following condition:
∫

ω

dx = S0, (7)

where S0 is given.
In the direct problem the electric current density

J is given and one needs to find the shape of ω that
satisfies (7) and such that the magnetic field Bω solution
of (1)–(4) satisfies also the equilibrium (6) for a real
constant p0.

Conditions (1)–(5), with the function J compactly
supported in Ω , imply that there exists the flux function
ϕ : Ω → R such that B =

(
∂ϕ
∂x2

, − ∂ϕ
∂x1

, 0
)

and ϕ is the
solution of:

−∆ϕ = µ0 J in Ω,

ϕ = 0 on Γ,

ϕ(x) = O(1) as ‖x‖ → ∞. (8)

The equilibrium (6) in terms of the flux ϕ becomes:

1
2µ0

‖∇ϕ‖2 + σC = p0 on Γ. (9)

The direct problem, in terms of the flux, consists in
looking for a domain ω such that the solution ϕω of (8)
satisfies (9) for a real constant p0.

2.1 The variational model of the direct problem

Under suitable assumptions, the equilibrium configu-
rations are given by the local stationary points with
respect to the domain of the following total energy:

E(ω) = − 1
2µ0

∫

Ω

‖∇ϕω‖2 dx + σ P(ω), (10)

subject to the equality constraint in the measure of ω:
∫

ω

dx = S0. (11)
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In (10), ϕω is the solution of (8) and P(ω) is the
perimeter of ω, i.e., the length of Γ = ∂ω when ∂ω is
regular enough (for instance of class C1):

P(ω) =
∫

Γ

dγ , dγ = length measure on Γ. (12)

The variational formulation of the direct problem
consists in finding the domain ω as a stationary point
of the total energy (10), subject to the constraint (11).
As ϕω is solution of (8), to prove that this variational
formulation is equivalent to the previous one it remains
to show that the equilibrium relation is automatically
ensured for all the stationary points.

2.2 First order optimality conditions

In this section we derive the necessary condition for a
domain ω to be a stationary point of the total energy
(10), subject to the constraint (12). For that purpose we
consider shape derivatives. Differentiation with respect
to the domain is a classical issue, in this work we
consider the point of view of F. Murat and J. Simon;
see (Allaire 2007; Murat and Simon 1976; Simon 1980).

Let V ∈ W1,∞(R2, R2) the set of the Lipschitz func-
tions φ from R2 to R2 such that φ and ∇φ are uniformly
bounded (Allaire 2007). Let ω be a bounded domain
in R2 of class C2. We consider a shape deformation
given by the mapping Id + V, where Id is the identity
mapping. Then, the deformed domain ωV is defined by
ωV = {x + V(x) | x ∈ ω}; see Fig. 2.

For every V ∈ W1,∞(R2, R2) the mapping Id + V is
a diffeomorphism provided ‖V‖W1,∞(R2,R2) < 1 (Allaire
2007).

Let O(ω) be the collection of images of ω considering
all possible diffeomorphisms. If F is a scalar function
defined in O(ω) we say that it is shape differentiable if
the function V → F(ωV) is differentiable at V = 0 in
the Banach space W1,∞(R2, R2).

The derivative of F, defined in W1,∞(R2, R2), is
called shape gradient and is denoted by F ′(ω). It can
be shown that the linear application V → F ′(ω)(V)

is determined by the normal component of V in the
boundary of ω, see the works by Allaire (2007), Novruzi

X+V(X)X

ω ωV

Fig. 2 Domain perturbation

and Pierre (2002) and Novruzi and Roche (1995) for a
detailed description of the shape derivative structure.

Let L be the Lagrangian function defined in O(ω) ×
R by:

L(ω, p0) = E(ω) − p0(m(ω) − S0), (13)

Then, the first order optimality condition is the
following:

L′(ω, p0)(V) = 0 ∀ V ∈ W1,∞(R2, R2). (14)

This kind of optimality conditions often appear in hy-
drodynamic problems and other fluid problems; let us
refer for instance to the work by Shercliff (1981) where
a large class of liquid metal equilibria is considered.

The next theorem shows how the term L′(ω, p0)(V)

of (14) can be calculated.

Theorem 1 Let Ω be the complement of a compact set
ω in R2 with nonempty interior. Assume that Γ = ∂ω =
∂Ω is of class C2. Let V be in W1,∞(R2, R2) with com-
pact support and ‖V‖W1,∞(R2,R2) < 1. Let J be a square
integrable function from Ω into R with compact support
in Ω .

Then, there exists a unique solution ϕωV in C1(ΩV)

(see Kress 1999 and Henrot and Pierre 1989) of :

−∆ϕωv
= µ0 J in ΩV,

ϕωV = 0 on ∂ΩV,

ϕωV (x) = O(1) as ‖x‖ → ∞. (15)

and the shape derivative of the lagrangian L is given by:

L′(ω, p0)(V) =
∫

Γ

(
1

2µ0
‖∇ϕω‖2 + σC − p0

)
(V · ν) dγ ,

(16)

where ν is the unit normal vector of Γ oriented toward
Ω , C is the curvature of Γ (seen from the metal) and ϕω

the solution of (8).

Proof See (Henrot and Pierre 1989; Pierre and Roche
1991; Novruzi and Roche 1995; Allaire 2007). ,-

This problem is very similar to some ones con-
sidered by several authors. We refer the readers to
the following papers and references therein for the
physical analysis of the simplifying assumptions that
the above model requires: see (Brancher and Séro-
Guillaume 1985; Coulaud and Henrot 1994; Gagnoud
et al. 1986; Henrot and Pierre 1989; Henrot et al. 1989;
Moffatt 1985; Novruzi 1997; Novruzi and Roche 1995,
2000; Pierre and Roche 1991, 1993; Roche 1996, 1997;
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Séro-Guillaume et al. 1992; Sneyd and Moffatt 1982;
Zouaoui et al. 1990).

3 The inverse problem

From a practical point of view, the magnetic field has to
be created by a simple configuration of inductors. For
that purpose, we consider a distribution of the electric
current density J of the form:

J = I
m∑

p=1

αpχΘp, (17)

where I is a given intensity of current, Θp, with 1 ≤
p ≤ m, are subsets of R2, χΘp are their characteristic
functions, and αp are dimensionless coefficients. The
inverse problem consists in determining the sets Θp.

Note that the expression (17) assumes that the elec-
tric current density is uniform on each region Θp. In-
ductors made of bundled insulated strands allow the
use of (17) as a good approximation, see (Sullivan 1999)
and references therein. They are also suitable to make
inductors of specific geometries.

For an electric current density given by (17), (5) is
satisfied imposing:

m∑

p=1

αp

∫

Θp

dx = 0. (18)

Given the target shape ω∗, we want to find the do-
mains Θp, 1 ≤ p ≤ m, as the solution of the following
optimization problem:

min
Θ1,...,Θm

d(ω, ω∗), (19)

where the function d is a distance between ω and ω∗.
The domain ω belongs to the set of admissible domains,
i.e., ω ∈ O , and is in equilibrium under the action of
the electric current density J of (17) in the variational
sense. In other words, ω satisfies the area constraint
(11) and the flux ϕω solution of (8) satisfies the equi-
librium equation (20) for a real constant p0:
∫

Γ

(
1

2µ0
‖∇ϕω‖2 + σC − p0

)
(V ·ν) dγ = 0

∀ V in C1(R2, R2). (20)

In certain cases it is possible to find a current density
distribution such that the target shape ω∗ is in equilib-
rium. This topic was already studied and there are a
few papers about the existence of such solutions. See
(Henrot and Pierre 1989; Felici and Brancher 1991;
Pierre and Rouy 1996). However, a solution given by

the addition of a finite number of characteristic func-
tions like (17) may be not possible. See (Henrot and
Pierre 1989) and (Canelas et al. 2008).

3.1 Two approaches for the inverse problem

We propose two different approaches for finding an
approximate solution of problem (19). The first one
considers a domain deformation of ω∗ defined by the
mapping:

TZ (x) = x + Z (x), ∀ x ∈ R2, (21)

where Z is a regular vector field with compact support
in R2. Then, defining:

ωZ = TZ (ω∗),

ΓZ = TZ (Γ ∗).

The formulation of the first inverse problem, with J
defined by (17) is:

min
Θ1,...,Θm,Z

‖Z‖2
L2(Γ ∗),

subject to:

ωZ is in equilibrium under J. (22)

Note that in this formulation Z is considered indepen-
dent of the domains Θp. We can think about Problem
(22) as a formulation that start from the target domain
ω∗, and looks for the smaller deformation such that
the deformed domain ωZ can be in equilibrium for the
electric current defined by the domains Θp.

A second formulation of the inverse problem can be
considered introducing a slack variable function p(x) :
Γ → R in order to make the equilibrium equation
satisfied for the target shape:
∫

Γ ∗

(
1

2µ0
‖∇ϕω‖2 + σC − p0 + p

)
(V ·ν) dγ = 0

∀ V in C1(R2, R2). (23)

The function p can be understood as an additional
pressure acting on the interface. Given J and ω∗, p is
the surface pressure that equilibrates the action of the
magnetic pressure and the surface tension. The second
formulation for the inverse problem is an indirect ap-
proach that try to minimize the L2(Γ ∗) norm of the
function p:

min
Θ1,...,Θm,p

‖p‖2
L2(Γ ∗),

subject to:

ω∗ is in equilibrium under J and p. (24)
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In this last formulation only shape variables con-
cerning the inductors are considered. This fact makes
(24) much easier to solve than (22). If the function p
vanishes at the solution of (24), the optimal domains
Θp will also be a solution of the first formulation with
the equilibrium domain matching exactly the target
shape. In the general case, p will not vanish at the
solution and, in this case, the target shape ω∗ will not
be in equilibrium under J only. Then, a second stage
of analysis will be necessary to find the equilibrium
domain under the obtained current density distribu-
tion. However, as the norm of p was minimized, the
resultant equilibrium domain is expected to be a good
approximation of the target one. Furthermore, since
(24) can be solved with a minor computational effort,
its solution J can be employed as an initial guess for the
formulation (22).

4 Numerical method

4.1 The exterior Dirichlet problem

To solve (8) in the exterior domain Ω we consider
a particular solution ϕ1 of the differential equation
given by:

ϕ1(x) = − µ0

2π

∫

R2
ln ‖x − y‖J(y) dy. (25)

This function is a solution of the problem:

− ∆ϕ1(x) = µ0 J in R2, (26)

ϕ1(x) = O(1) as ‖x‖ → ∞. (27)

Note that for the current density distribution defined by
(17), the expression of ϕ1 is

ϕ1(x) = −µ0 I
2π

m∑

p=1

αp

∫

Θp

ln ‖x − y‖ dy. (28)

The function ϕ1 can be calculated as a sum of line
integrals on the boundaries Γp of domains Θp. Consider
the function w : R2 × R2 → R2 defined as:

w(x, y) = (1/4)(1 − 2 ln ‖x − y‖)(x − y). (29)

The divergence of w is ∇y · w = ln ‖x − y‖. Then, (28)
becomes:

ϕ1(x) = −µ0 I
2π

m∑

p=1

αp

∫

Γp

w(x, y) · ν dγ. (30)

The function ϕ can be computed as:

ϕ(x) = ξ(x) + ϕ1(x), (31)

where the function ξ is the solution of the following
exterior problem:

−∆ξ(x) = 0 in Ω,

ξ(x) = −ϕ1(x) on Γ,

‖ξ(x)‖ = O(1) as ‖x‖ → ∞. (32)

Following Kress (1999), an integral single layer repre-
sentation of the solution of (32) is given by:

ξ(x) = − 1
2π

∫

Γ

q(y) ln ‖x − y‖ dγ + c, (33)

where the constant c is the value at the infinity of ξ and
the function q(y) ∈ H−1/2(Γ ) satisfies:
∫

Γ

q(y) dγ = 0. (34)

It remains to impose the boundary conditions on Γ .
Here, this is done with a weak formulation. Let aΓ (q, g)

be the following elliptic bilinear form:

aΓ (q, g) = − 1
2π

∫

Γ

g(x)

∫

Γ

q(y) ln ‖x − y‖ dγ dγ

+ c
∫

Γ

g(x) dγ (35)

defined on H−1/2(Γ ) × H−1/2(Γ ). We look for a func-
tion q(y) ∈ H−1/2(Γ ) that satisfies (34) and:

aΓ (q, g) = −
∫

Γ

ϕ1(x)g(x) dγ ∀ g ∈ H−1/2(Γ ). (36)

Equation (36) with ϕ1 given by (30) will be used
instead of (8). Note that the unknown variables are now
the function q and the scalar c.

Finally, the norm ‖∇ϕ‖ in the equilibrium (20) can
be computed as:

‖∇ϕ‖ =
∣∣∣∣
∂ϕ

∂ν

∣∣∣∣ =
∣∣∣∣
∂ϕ1

∂ν
+ ∂ξ

∂ν

∣∣∣∣ , (37)

where the first equality comes from the fact that ϕ

is constant on Γ , and the second one from (31). The
normal derivative of ϕ1 is obtained from (30):

∂ϕ1

∂νx
(x) = −µ0 I

2π

m∑

p=1

αp

∫

Γp

∂

∂νx
(w(x, y) · ν) dγ. (38)

The following expression can be used for ξ :

∂ξ

∂νx
(x) = − 1

2π

∫

Γ

q(y)
∂

∂νx
ln ‖x − y‖ dγ

+1
2

q(x) ∀ x ∈ Γ, (39)

where the integral of (39) is understood in the Cauchy
principal value sense.
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4.2 The SAND formulation of the inverse problems

A SAND formulation of the inverse problems (22)
and (24) is employed here. In other words, the state
variables p0, c and q are incorporated as unknowns of
the optimization problem and the state and equilibrium
equations are incorporated as equality constraints. The
optimization problem of the formulation (22) becomes:

min
J,Z ,p0,c,q

‖Z‖2
L2(Γ ∗), (40)

subject to the area constraint:
∫

ωZ

dx = S0, (41)

the state equations:

aΓZ (q, g) = −
∫

ΓZ

ϕ1(x)g(x) dγ ∀ g ∈ H−1/2(ΓZ ),

(42)
∫

ΓZ

q(y) dγ = 0, (43)

and the equilibrium equation:
∫

ΓZ

(
1

2µ0
‖∇ϕ‖2 + σC − p0

)
(V ·ν) dγ = 0

∀ V in C1(R2, R2), (44)

where ϕ1, ϕ, and ξ are given by (25), (31) and (33).
The optimization problem of the formulation (24)

becomes:

min
J,p,p0,c,q

‖p‖2
L2(Γ ∗), (45)

subject to the state equations:

aΓ ∗(q, g) = −
∫

Γ ∗
ϕ1(x)g(x) dγ ∀ g ∈ H−1/2(Γ ∗), (46)

∫

Γ ∗
q(y) dγ = 0, (47)

and the equilibrium equation:
∫

Γ ∗

(
1

2µ0
‖∇ϕ‖2 + σC − p0 + p

)
(V ·ν) dγ = 0

∀ V in C1(R2, R2). (48)

4.3 The numerical model

4.3.1 Discretization of the domain

We consider an approximation of the domain ω∗ de-
fined by the piecewise linear closed boundary Γ h, i.e.,

Γ h is the union of the n linear finite elements 1 j in
R2, j ∈ {1, . . . , n}. The nodes of the boundary Γ h are
denoted by xi.

A direction Ẑ i ∈ R2 is associated to each vertex xi of
Γ h. We construct a continuous piecewise linear vector
field Z i from Γ h in R2 such that Z i(xk) = δik Ẑ i. The
support of Z i is equal to the union of the finite elements
for which xi is a node. The vector field Z of (21) is
computed as:

Z (x) =
n∑

i=1

ui Z i(x), (49)

and the updated boundary Γu is then given by:

Γu =
{

X | X = x + Z (x); ui ∈ R, x ∈ Γ h} , (50)

where uT = (u1, . . . , un) ∈ Rn is the vector of unknowns
which determine the evolution of the boundary. This
representation has the advantage of defining only one
degree of freedom for each node. We denote by ωu
the interior domain related to Γu in order to show the
dependence with respect to the vector u.

4.3.2 Inductors

We consider inductors with a transversal cross-section
corresponding to one of the parametric shapes given by
Fig. 3. The contribution of each inductor to the function
ϕ1 is calculated using (30). The boundary Γp of each
inductor is divided in small linear elements to perform

Fig. 3 Parametric shape of the cross-section of the inductors.
1. four-parameter inductor of rectangular cross-section; 2. six-
parameter inductor of parabolic vertical sides; 3. six-parameter
inductor of parabolic horizontal sides
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the integration. The entire set of shape parameters
corresponding to the inductors is denoted by up.

4.3.3 Exterior boundary value problem

For numerical calculations we consider a piecewise
constant approximation qh(x) of q(x):

qh(x) =
n∑

j=1

q je j(x), (51)

where e j(x) = 1 if x ∈ 1 j and zero elsewhere.
Replacing the function g in (42) by ei, with i ∈

{1, . . . , n}, the weak formulation of the boundary value
problem, given by (42) and (43), becomes:

A(u)q = b(up, u), (52)

where the vector qT = (q1, . . . , qn, c) is in Rn+1, u is
the vector of shape variables and up is the vector that
contains the shape parameters of the inductors. The
coefficients aij of the symmetric matrix A(u) are:

aij(u) = − 1
2π

∫

1i

∫

1 j

ln ‖x − y‖ dγ dγ i, j ∈ {1, . . . , n},

(53)

aij(u) =
∫

1 j

dγ i = n + 1, and j ∈ {1, . . . , n},

(54)

and the components bi of the vector b are:

bi(up, u) = −
∫

1i

ϕ1(x) dγ i ∈ {1, . . . , n}, (55)

bi(up, u) = 0 i = n + 1, (56)

For given vectors u and up, the linear system (52) is
symmetric and non-sparse. Numerical approximations
of the element integrals of previous and later equations
are computed by Gauss quadrature.

If q is the solution of the system (34), (36) and the
piecewise constant approximation qh given by the solu-
tion of (52), then we have the following error bounds
(see Nédélec 1977):

‖q − qh‖H−1/2(Γ ) ≤ C1h‖q‖H1(Γ ), (57)

and if ξh is the approximation of (33) then
∥∥∥∥
∂ξ

∂ν
− ∂ξh

∂ν

∥∥∥∥
H−1/2(Γ )

≤ C2h‖q‖H1(Γ ). (58)

The approximation of the normal derivative ∂ξ
∂ν

at
xl ∈ 1l is given by:

∂ξh

∂ν
(xl) = − 1

2π

n∑

i=1
i .=l

qi

K∑

m=1

pm
∂ ln ‖xl − xi(sm)‖

∂ν
+ 1

2
ql,

(59)

where xi(sm) are the integration points and pm the
weights of the Gauss quadrature formula. Thus, the
computation of ∂ξh

∂ν
(xl) needs O(n) floating point

operations.

4.3.4 Equilibrium equation

Consider a direction V̂i ∈ R2 associated to each vertex
xi of Γ h and the continuous piecewise linear vector field
Vi from Γ h in R2 such that Vi(xk) = δikV̂i. If we project
(44) in the finite dimensional space generated by Vi, i ∈
{1, . . . , n}, the discrete version of the equilibrium is the
following:

DEi(up, u, q, p0) =
∫

Γu

(
1

2µ0
‖∇ϕ‖2 − p0

)
(Vi ·ν) dγ

+ σC i ·V̂i, (60)

where i ∈ {1, . . . , n} and C i is an approximation of the
mean curvature at xi, given by:

C i =
(

(xi − xi−1)

‖xi − xi−1‖
− (xi+1 − xi)

‖xi+1 − xi‖

)
. (61)

The gradient ∇ϕ is computed using (37)–(39).
In the case of (48), we consider a piecewise linear

function ph defined as:

ph(x) =
n∑

i=1

pi fi, (62)

where the function fi satisfies fi(xk) = δik. Then, de-
fining pT = (p1, . . . , pn), the equilibrium equation is
defined as:

DFi(up, p, q, p0)= 1
2µ0

∫

Γ ∗
(‖∇ϕ‖2 − p0 + ph)(Vi ·ν) dγ

+ σC i ·V̂i. (63)

4.4 Geometric constraints

In order to avoid the possibility of overlapping between
the domains occupied by the liquid metal and the in-
ductors, we propose a new approach that consists in
considering the following inequalities:

ψ(x j) ≤ ψ0, for all x j ∈ X, (64)



Inductor shape optimization for electromagnetic casting

where X is a chosen set of points belonging to the
boundary of the inductors. The real valued function ψ

is zero in the interior of the liquid metal and negative
in the exterior. Then, choosing a negative value for the
parameter ψ0, (64) enforces the points x j to be in the
exterior of the liquid metal as illustrated by Fig. 4.

The function ψ that we propose is defined as the
solution of:

∆ψ(x) = 0 in Ω∗,
ψ(x) = 0 on Γ ∗,∫

Γ ∗
∇ψ(x) · ν dγ = −1. (65)

In a similar way as the function ξ in Section 4.1, ψ can
be calculated as:

ψ(x) = − 1
2π

∫

Γ

q(y) ln ‖x − y‖ dγ + c, (66)

where q must satisfy:
∫

Γ

q(y) dγ = −1. (67)

As in Section 4.3.3, an approximated solution of q and
c can be obtained solving a linear system similar to
(52). The numerical approximation of the function ψ

is obtained employing (66).
The value ψ0 can be defined choosing a point in the

exterior of the liquid metal and calculating the value of
the function ψ at this point. See Figs. 5 and 6 that show
the function ψ for two different target shapes.

Defining h j(up) = ψ(x j(up)) − ψ0, all the geometric
constraints are expressed as:

h(up) ≤ 0. (68)

Note that the function ψ was defined for the fixed
domain Ω∗. Then, strictly speaking, the constraints (64)

Fig. 4 Geometric constraints

Fig. 5 Function ψ for a rectangular like target shape

are suitable just for the the second formulation of the
inverse problem. In the case of the first formulation, ψ

should be defined for the changing domain ΩZ . In that
case there is an extra computational cost associated to
the computation of q and c each time that the domain
ΩZ is updated. However, we have observed for all the
examples considered that the use of ψ defined for the
fixed domain Ω∗ is enough to prevent the overlap-
ping between domains. The reason is that the domain
occupied by the liquid metal keeps very close to the
target shape all along the optimization process. Only
the inductors experiment big shape changes but the
constraints (64) are effective to keep them away from
the target shape.

4.5 Discretized inverse problems

Consider the area function S(u) =
∫
ωu

dx, and the
vector function DE(up, u, q, p0), such that (DE)i =

Fig. 6 Function ψ for a “T” like target shape
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Fig. 7 Example 1, target
shape considering
concentrated intensities.
Solid line: equilibrium shape,
plus: positive current, circle:
negative current

DEi(up, u, q, p0). The discretized version of the first
inverse problem is the following:

min
up,u,q,p0

‖Z‖2
L2(Γ ∗), (69)

a

b

Fig. 8 Example 1, initial configuration and geometric constraints
of examples Ex1a and Ex1b, a example Ex1a. b example Ex1b.
Dash-dot line: target shape, solid line: curve ψ(x) = ψ0, plus:
inductor of positive current, circle: inductor of negative current

Fig. 9 Solution of the Example 1, both formulations, equilibrium
shape and level curves of the flux function ϕ

subject to the nonlinear equality constraints:



A(u)q − b(up, u)

S(u) − S0

DE(up, u, q, p0)



 = 0, (70)

and the nonlinear inequalities:

h(up) ≤ 0. (71)
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Fig. 10 Example 1, evolution of the objective functions, a first
formulation, b second formulation
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Fig. 11 Example 2, initial configuration and geometric con-
straints of examples Ex2a to Ex2d. Dash-dot line: target shape,
solid line: curves ψ(x) = ψ0 for four different values of ψ0, plus:
inductor of positive current, circle: inductor of negative current

The discretized version of the second inverse prob-
lem is:

min
up,q,c,p0

‖p‖2
L2(Γ ∗), (72)

a

b

Fig. 12 Solution of example Ex2a, first formulation, a solution
and geometric constraint, b equilibrium shape and level curves of
the flux function ϕ

with the equality constraints:
(

Aq − b(up)

DF(up, p, q, p0)

)
= 0, (73)

and the nonlinear inequalities:

h(up) ≤ 0. (74)

In this case, since the integrals are defined on the
fixed domain Γ ∗ the vector u of shape variables is not
present in the formulation.

5 Numerical examples

We consider several examples to illustrate the behavior
of the proposed formulations of the inverse problem.
The goal is to identify the position and shape of the in-
ductors given by the shape variables up. The shape and
the surface S0 of the target shape, the surface tension σ ,
the intensity I and the dimensionless coefficients αp are
given. For each example all the parameters, including
the parameters ψ0 of the geometric constraints, are the
same for both formulations. The initial values of the
state variables q and p0, the shape variable u of the first

a

b

Fig. 13 Solution of example Ex2a, second formulation, a solution
and geometric constraint, b equilibrium shape and level curves of
the flux function ϕ
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formulation and the pressure p of the second one are
set equal to zero for all the examples.

For the solution of the optimization problems, the
line search interior-point algorithm for nonlinear con-
strained optimization problems FAIPA was employed.
For a given feasible point with respect to the inequal-
ity constraints, FAIPA defines a feasible and descent
arc solving three linear systems of equations with the
same coefficient matrix. Then, it performs a line search
along this arc to define the next point. FAIPA makes
subsequent iterations until a convergence criterion is
satisfied. In this paper we accept the actual point if the
norm of the equality constraints is less than 1.0 × 10−6

and the reduction of the objective function with respect
to the value at the previous iteration is less than 0.1%.

At each iteration FAIPA needs the vector of partial
derivatives with respect to all the design variables of the
objective function and all the constraints. Herein, we
have calculated exact derivatives for all the functions
of the discretized model; see (Choi and Kim 2004).
For more details about FAIPA see (Herskovits 1998;
Herskovits et al. 1996, 2005).

a

b

Fig. 14 Solution of example Ex2d, second formulation, a solution
and geometric constraint, b equilibrium shape and level curves of
the flux function ϕ

For each example we plot the initial position and
shape of the inductors, the target shape of the liq-
uid metal, the shape of the inductors obtained by the
optimization algorithm and the evolution of the objec-
tive function during the iterative process.

5.1 Example 1

The target shape of this example is the solution of the
direct free-surface problem considering four concen-
trated intensities of value I = 0.1, with the sign given
by Fig. 7; see (Canelas et al. 2008, Example 1a).

For the inverse problem we consider four inductors
of type 1 of Fig. 3, and a target shape of area S0 equal to
π . The intensity I is equal to 0.1 and the surface tension
σ is equal to 1.0 × 10−4. The dimensionless coefficients
αp have absolute value equal to 4.0 with the sign given
by Fig. 8; two configurations for the initial positions of
the inductors, named Ex1a and Ex1b, are considered as
depicted by the figure.

The configuration of inductors obtained was the
same for both initial configurations and both formu-
lations. The equilibrium shape obtained is almost the
same as the target one and none of the geometric
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Fig. 15 Example 2, evolution of the objective functions, a first
formulation, b second formulation
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Fig. 16 Example 3, initial configuration and geometric con-
straints of examples Ex3a and Ex3b. Dash-dot line: target shape,
solid line: curves ψ(x) = ψ0 for four different values of ψ0, plus:
inductor of positive current, circle: inductor of negative current

constraints is active at the solution. Figure 9 shows
the inductors obtained and some level curves of the
flux function ϕ at the solution. Figure 10 shows the
evolution of the objective function during the iterative
process.

Note that the objective functions of both formula-
tions vanish in the beginning due to the choice of the
initial values of vectors u and p. Then, as the equality
constraints are not satisfied, the value of the objective
function increases in the initial iterations. After some
iterations the value of the objective function reaches a
maximum and decreases in subsequent iterations. At
the end of the iterative process the objective function
reaches the optimum value and the equality constraints
are satisfied.

a

b

Fig. 17 Solution of example Ex3a, first formulation, a solution
and geometric constraint, b equilibrium shape and level curves of
the flux function ϕ

a

b

Fig. 18 Solution of example Ex3a, second formulation, a solution
and geometric constraint, b equilibrium shape and level curves of
the flux function ϕ

5.2 Example 2

In this example the target shape is the rounded square
depicted by Fig. 11. For the inverse problem we con-
sider four inductors of type 1 of Fig. 3, and a target
shape of area S0 equal to 3.86. The intensity I is equal
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Fig. 19 Example 3, evolution of the objective functions, a first
formulation, b second formulation
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Fig. 20 Example 4, initial configuration and geometric con-
straints of examples Ex4a and Ex4b. Dash-dot line: target shape,
solid line: curves ψ(x) = ψ0 for four different values of ψ0, plus:
inductor of positive current, circle: inductor of negative current

to 0.1 and the surface tension σ is equal to 1.0 × 10−4.
The dimensionless coefficients αp have absolute value
equal to 4.0 with the sign given by Fig. 11. Four dif-
ferent values of the parameter ψ0 of the geometric
constraints are considered, these values generate four
different problems that we have named Ex2a to Ex2d,
as shown by the Fig. 11. The example Ex2a corresponds
to the constraint given by the closest curve to the target
shape while the example Ex2d corresponds to the the
farthest one.

For the first formulation, the same configuration
of inductors was obtained for all cases as shown by
Fig. 12a; the equilibrium shape and some level curves

a

b

Fig. 21 Solution of example Ex4a, first formulation, a solution
and geometric constraint, b equilibrium shape and level curves of
the flux function ϕ

a

b

Fig. 22 Solution of example Ex4a, second formulation, a solution
and geometric constraint, b equilibrium shape and level curves of
the flux function ϕ

of the flux function ϕ at the solution is depicted by
Fig. 12b. The geometric constraints were not active in
all the examples using this formulation. Employing the
second formulation, the final configuration of inductors
depends on the value of the parameter ψ0. For the
larger value, Fig. 13a shows the inductors obtained and
Fig. 13b depicts the equilibrium shape and some level
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Fig. 23 Example 4, evolution of the objective functions, a first
formulation, b second formulation
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Fig. 24 Example 5, initial configuration. Dash-dot line: target
shape, solid line: curves ψ(x) = ψ0 for four different values of
ψ0, plus: inductor of positive current, circle: inductor of negative
current

curves of the flux function ϕ at the solution. Figure 14
shows the same for the smaller value of ψ0. Different
from the first formulation, the second one has the so-
lution having the inductors as close as the liquid metal
as possible. In the four cases the geometric constraint
is active. Although the location of the inductors is
quite different using one or the other formulation, the
optimum value of the objective function of the first
formulation is almost the same for all the results ob-
tained. The evolution of the objective function during
the iterative process is shown by Fig. 15.

5.3 Example 3

The target shape of this example is the bar depicted
by Fig. 16. For the inverse problem we consider eight
inductors of type 1 of Fig. 3, and a target shape of
area S0 equal to 7.86. The intensity I is equal to 0.1
and the surface tension σ is equal to 1.0 × 10−4. The
dimensionless coefficients αp have absolute value equal
to 4.0 with the sign given by Fig. 16. The solutions for
two different values of the parameter ψ0, named Ex3a
and Ex3b, are compared.

a

b

Fig. 25 Solution of the example Ex5, first formulation, a solution
and geometric constraint, b equilibrium shape and level curves of
the flux function ϕ

a

b

Fig. 26 Solution of the example Ex5, second formulation, a
solution and geometric constraint, b equilibrium shape and level
curves of the flux function ϕ

In this example, the main difference employing one
or the other formulation is the size of the inductors
located on the left and right sides. This size depends
strongly on the value of the parameter ψ0 when using
the first formulation but weekly employing the second
one. For the larger value and for the first formulation,
Fig. 17a shows the inductors obtained and Fig. 17b
depicts the equilibrium shape and some level curves of
the flux function ϕ at the solution. Figure 18 shows the

a
0 5 10 15 20 25 30

0

0.01

0.02

0.03

0.04

0.05

0.06

Iteration

O
bj

ec
tiv

e 
fu

nc
tio

n

Ex5

b
0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1
x 10–6

Iteration

O
bj

ec
tiv

e 
fu

nc
tio

n

Ex5

Fig. 27 Example 5, evolution of the objective functions, a first
formulation, b second formulation
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Fig. 28 Example 6, initial configuration. Dash-dot line: target
shape, solid line: curves ψ(x) = ψ0 for four different values of
ψ0, plus: inductor of positive current, circle: inductor of negative
current

same for the second formulation. Figure 19 shows the
evolution of the objective function during the iterative
process.

5.4 Example 4

In this example the only difference with respect to
the previous one is the sign of the coefficients αp

as depicted by Fig. 20. For the larger value of the
parameter ψ0 and for the first formulation, Fig. 21a
shows the inductors obtained and Fig. 21b depicts the
equilibrium shape and some level curves of the flux
function ϕ at the solution. Figure 22 shows the same
for the second formulation. The evolution of the objec-
tive function during the iterative process is shown by
Fig. 23.

5.5 Example 5

The target shape of this example is the bar depicted
by Fig. 24. For the inverse problem we consider eight

a

b

Fig. 29 Solution of the example Ex6, first formulation, a solution
and geometric constraint, b equilibrium shape and level curves of
the flux function ϕ

a

b

Fig. 30 Solution of the example Ex6, second formulation, a
solution and geometric constraint, b equilibrium shape and level
curves of the flux function ϕ

inductors. The inductors on the top and bottom sides
are of type 3 of Fig. 3 while the inductors on the left and
right sides are of type 1. The target shape has S0 equal
to 4.99, the intensity I is equal to 0.1 and the surface
tension σ is equal to 1.0 × 10−4. The dimensionless
coefficients αp have absolute value equal to 4.0 with the
sign given by Fig. 24.

Figure 25a shows the inductors obtained for the
first formulation, and Fig. 25b depicts the equilibrium
shape and some level curves of the flux function ϕ at
the solution. Figure 26 shows the same for the second
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Fig. 31 Example 6, evolution of the objective functions, a first
formulation, b second formulation
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Table 1 Summary of results

aObjective function of the
first formulation calculated by
a free-surface analysis
considering the inductors
obtained
bF1: first formulation, F2:
second formulation

Example Nodes Inductors First formulation Second formulationa

Iterations Obj. F1b Iterations Obj. F1b Obj. F2b

Ex1a 72 4 42 4.663e-07 48 1.773e-07 3.787e-11
Ex1b 72 4 58 7.267e-07 114 1.791e-07 3.777e-11
Ex2a 80 4 52 1.507e-04 93 1.640e-04 2.338e-08
Ex2b 80 4 52 1.507e-04 325 1.723e-04 3.535e-08
Ex2c 80 4 53 1.507e-04 318 1.964e-04 4.268e-08
Ex2d 80 4 53 1.507e-04 77 2.223e-04 4.731e-08
Ex3a 120 8 20 7.345e-04 20 1.135e-02 1.005e-07
Ex3b 120 8 21 4.513e-03 24 1.857e-02 1.142e-07
Ex4a 120 8 65 2.119e-02 22 9.728e-02 1.273e-07
Ex4b 120 8 14 7.712e-02 16 2.261e-01 1.663e-07
Ex5 136 8 29 8.558e-03 28 2.110e-02 8.988e-07
Ex6 136 8 21 5.513e-02 29 5.921e-01 1.260e-06

formulation. Figure 27 shows the evolution of the ob-
jective function during the iterative process.

5.6 Example 6

In this example the only difference with respect to the
previous one is the sign of the coefficients αp as de-
picted by Fig. 28. For the larger value of the parameter
ψ0 and for the first formulation, Fig. 29a shows the
inductors obtained and Fig. 29b depicts the equilibrium
shape and some level curves of the flux function ϕ at
the solution. Figure 30 shows the same for the second
formulation. As the figures show, the solutions of the
considered formulations are very different in this case.
This shows that the results of the second formulation
have to be used with caution, they can be quite different
from the best designs of the first formulation. The
evolution of the objective function during the iterative
process is shown by Fig. 31.

5.7 Summary of results

Table 1 resumes the information about the considered
examples. For each one we give the number of nodes
used for the finite element approximation of the bound-
ary Γ ∗ of the target shape and the number of induc-
tors. For each formulation the number of iterations
performed by the optimization algorithm is indicated
as well as the final value of the objective function. For
the second formulation, the final value of the objective
function of the first formulation is also indicated, it
was calculated solving the free-surface problem con-
sidering the inductors obtained by the optimization
algorithm. As one could expect, the first formulation
shows smaller values of its objective function in all
the examples with the only exception of the examples
Ex1a and Ex1b where the shape of the inductors at the
solution is almost the same.

6 Conclusions

This paper deals with the shape design of the in-
ductors used in the electromagnetic casting of molten
metals. Two different approaches based on nonlinear
optimization have been proposed in order to find the
position and shape of suitable inductors. The first one
minimizes the difference between the geometries of the
best possible equilibrium domain and the target shape;
the second minimizes a slack variable function related
to the equilibrium equation on the target boundary. We
have also shown how to consider geometric constraints
that prevent the inductors from penetrating the liquid
metal. The finite dimensional optimization problems
obtained after discretization were solved employing the
line search interior-point algorithm FAIPA.

Some exhibited examples show that both formula-
tions are effective to design suitable inductors. How-
ever, the formulations are not equivalent judging by the
results obtained for the examples Ex2a-Ex2d and Ex6.
In particular, the last example shows that the solution
of the second formulation can be, qualitatively, quite
different from the best design of the first one.

In terms of accuracy, the first formulation has per-
formed better for almost all the examples. However,
the final value of the objective function is only slightly
different when using the second one. On the other
hand, the second formulation has the advantage of
being less time consuming, because of the lack of the
shape variables related to the liquid metal. Thus, as
most of the results are similar, this formulation appears
to be interesting for finding an initial guess for the first
formulation.

In contrast to the results obtained for the example
Ex5, for the example Ex6 both formulations fail to
find an accurate result. This fact shows the importance
of the initial configuration of inductors. Therefore, it
would be meaningful a solution method for finding
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good initial configurations. As further study, we will
consider this subject by means of topology optimization
techniques.
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