
Struct Multidisc Optim (2012) 46:285–301
DOI 10.1007/s00158-011-0756-2

RESEARCH PAPER

Inverse and direct magnetic shaping problems

Jaemin Shin · John P. Spicer · Jeffrey A. Abell

Received: 27 June 2011 / Revised: 26 November 2011 / Accepted: 20 December 2011 / Published online: 26 January 2012
c© Springer-Verlag 2012

Abstract In this work, we study the direct and inverse
problems arising from electromagnetic shaping in applica-
tions such as continuous casting processes. The magnetic
field produces a surface pressure which forces a molten
metal to change its shape until it reaches an equilibrium
state between the magnetic pressure and the surface ten-
sion. The arising direct problem is a free boundary problem
which is to determine the shape of molten metals for a given
magnetic field. On the other hand, the inverse problem is
to seek a configuration of electromagnetic field generators
(i.e. inductors) in order that molten metals have prescribed
shapes. A level set method will be presented to determine an
equilibrium shape formed by a given configuration of mag-
netic fields. Also a computational method as well as unique-
ness results for the inverse problem will be introduced and
illustrated with examples.
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1 Introduction

Traditional manufacturing processes require custom-built
tooling, such as dies or molds, to form materials into
specific shapes. By contrast, electromagnetic shaping in
applications such as continuous casting processes offers the
potential to manufacture parts without using hard tooling.
The benefits of eliminating hard tooling include enhanced
operational flexibility and tooling cost reduction. In this
work, we analyze the mathematical model and give numeri-
cal simulation results for electromagnetic shaping of homo-
geneous materials (e.g. molten metals) in 2-dimensional
space.

Suppose that there is an infinitely long vertical cylinder
that contains a layer of molten metal surrounded by a set
of inductors under vacuum. Then the surface of the molten
metal is shaped by the electromagnetic force from the induc-
tors. We assume that the frequency of the current in the
inductors is very high so that the magnetic field does not
penetrate into the metal. If we ignore the perturbation of
the cylinder which occurs under gravity, the problem can be
treated as a 2-dimensional problem by considering a cross
section of the cylinder (Shercliff 1981). Some results for
a 3-dimensional problem including gravity can be found
in literature (e.g. Pierre and Roche 1993; Pierre and Rouy
1996).

It is known (see e.g. Shercliff 1981; Pierre and Roche
1991) that the following system of equations on a cross
section of the cylinder represents the equilibrium state
between the Laplace force and the magnetic pressure at the
boundary of the domain, which is the interface of the molten
metal and the vacuum (see Fig. 1a).

∇ × B = μ0j in � (1.1a)

∇ · B = 0 in � (1.1b)
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Fig. 1 Example magnetic shaping apparatuses showing two different
types of shaping problems: a The exterior problem where shaping
conductors are outside of the material. b The interior problem where
shaping conductors are inside of the material

B · ν = 0 on � (1.1c)

|B| = O

(
1

|x |2
)

as |x | → ∞ (1.1d)

1

2μ0
|B|2 + σκ = P0 on � (1.1e)

Here B = (Bx (1) , Bx (2) , 0) is the magnetic field, j =
(0, 0, j) the density of the current vector such that

∫
�

jdx = 0, (1.2)

ν the unit normal vector from the bounded domain ω := �
c

to � at the boundary � := ∂ω, μ0 the magnetic perme-
ability, σ the surface tension of the molten metal, κ the
curvature of �, and P0 a constant which represents the
difference between the interior and exterior pressures. We
assume further that j is compactly supported in �. Then
there exists a potential function u such that

B =
(

∂u

∂x (2)
, − ∂u

∂x (1)
, 0

)

and solves

− 	u = μ0 j in � (1.3a)

u = 0 on � (1.3b)∣∣∣∣∂u

∂r

∣∣∣∣ = O

(
1

|x |2
)

as |x | → ∞ (1.3c)

1

2μ0
|∇u|2 + σκ = P0 on � (1.3d)

where r = |x |. If it is assumed that the molten metal
is incompressible, the area of the cross section should be
fixed. Thus we have the following additional condition for a
given S0.∫

ω

dx = S0. (1.4)

Another well-known mathematical model for the electro-
magnetic casting of molten metals is an interior problem,
which reads

− 	ui = μ0 j in ω (1.5a)

ui = 0 on � (1.5b)

1

2μ0
|∇ui |2 − σκ = P0 on � (1.5c)

∫
ω

dx = S0 (1.5d)

Here we assume that the simply connected domain ω is sur-
rounded by materials and the set of inductors is located in ω

(see Fig. 1b).
It is a free boundary problem to determine � for a given

current density j from (1.3) or (1.5). This free boundary
problem or problems with similar boundary condition to
(1.3d) and (1.5c) have been studied analytically as well as
numerically. Especially, Henrot and Pierre found necessary
and sufficient condition for the existence for the exterior
problem (1.1) under certain restrictions on j and P0 using
the technique of complex potentials in Henrot and Pierre
(1989) (see also Canelas et al. 2009b). A variational for-
mulation for (1.3) and (1.5) was introduced in Pierre and
Roche (1991) (see also Crouzeix 1991), which is one of the
key ingredients in the literature. Define a functional

Eo(ω) = − 1

2μ0

∫
�

|∇u|2dx + σ

∫
�

d S (1.6)

where u solves (1.3a)–(1.3c). Then the stationary point for
(1.6) with Lagrange multiplier and the constraint (1.4) sat-
isfies the boundary condition (1.3d) due to Theorem 1,
which will be stated in Section 2. Similarly, the energy
functional for the interior problem is given by

Ei (ω) = − 1

2μ0

∫
ω

|∇ui |2dx + σ

∫
�

d S (1.7)
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for a solution ui to (1.5a)–(1.5c). For the stability and exis-
tence of the energy functionals Eo and Ei , we refer the
reader to Henrot and Pierre (1990), Dambrine and Pierre
(2000), Novruzi (2004) and Barkatou et al. (2006) and ref-
erences therein. Several numerical methods for the direct
problem have been proposed as well, for example, see
Shercliff (1981), Pierre and Roche (1991), Coulaud and
Henrot (1994) and Novruzi and Roche (1995).

On the other hand, it is a very interesting problem from
the practical as well as mathematical points of view to find
a configuration of current density j which produces a par-
ticular target shape ω. However, only a few results on this
inverse problem are known compared to the direct problem.
As mentioned earlier, Henrot and Pierre provided the neces-
sary and sufficient conditions for feasible domains in Henrot
and Pierre (1989) for a square integrable j . It is, however,
a more natural assumption in a laboratory that j is a lin-
ear combination of Dirac delta functions. In this case, it
is known that there is a domain which can not be shaped
although a target shape is smooth enough. Canelas et al.
gave numerical solutions to the inverse problems in Canelas
et al. (2009b) using the Feasible Arc Interior Point Algo-
rithm. They also used the same method by assuming that
the current density is a finite sum of characteristic functions
in Canelas et al. (2009a).

In this work, we showed the inverse problem
has infinitely many solutions for square integrable j
(Proposition 1). The non-uniqueness can be fixed from
the assumption that j is a finite sum of Dirac delta func-
tions (Theorems 2 and 3). For the numerical algorithm, we
change the equilibrium conditions (1.3d) and (1.5c) to

∂u

∂ν
= f on �

∂ui

∂ν
= f i on �

respectively. Then we can consider our problems as standard
inverse source problems of the Poisson equation. Although
there are several possible choices to determine the normal
data f, f i from the knowledge of the given domain and the
equilibrium conditions (1.3d) and (1.5c), we take f, f i so
that they are smooth and satisfy

∫
�

f d S =
∫

�

f i d S = 0

assuming � has a symmetry. Under these settings, we
develop an efficient and fast algorithm to solve the inverse
problem based on the idea presented in Kang and Lee
(2004). We remark that our algorithm for the inverse prob-
lem is non-iterative and direct.

In order to check our numerical solution for the inverse
problem, it is necessary to solve the direct problem. Here,

we introduce the level set method, which is more accurate
than the known solvers. For the general theory of the level
set method, we refer the reader to Sethian (1999) and Osher
and Fedkiw (2003), see also Allaire et al. (2002) and Allaire
et al. (2005) for the level set formulation for the shape opti-
mization. We take the derivative of the energy functional
with penalty term as the velocity in the level set equation
and this level set equation is able to track the equilibrium
domain successfully.

This paper is organized as follows. In Section 2 we
describe the basic idea of the level set method to solve the
exterior direct problem. The inverse problem is discussed
in Section 3. The uniqueness result under certain restric-
tions as well as a numerical algorithm will be given there.
The numerical simulation for the inverse problem is pre-
sented in Section 4, based on the algorithm discussed in
Section 3. The numerical solutions for the inverse problems
are verified by the level set method as well. In Section 5 we
adapt the idea for the exterior problem to the interior prob-
lem. Some concluding remarks are also drawn in the last
section.

2 Level set method

In this section, we solve the exterior direct problem by
the level set method. First we define the level set function
φ(t, x) such that

ω(t) = {x : φ(t, x) < 0}
�(t) = {x : φ(t, x) > 0}
�(t) = {x : φ(t, x) = 0}

Suppose that the velocity of each point is governed by

dx

dt
= V (t, x(t)) = vν.

Since ν = ∇φ/|∇φ|, we obtain the standard level set
equation,

φt + v|∇φ| = 0. (2.1)

One of the key issues for the level set method is to deter-
mine the velocity vector V or v in the level set equation. To
this end, we define an objective functional E(ω) from the
penalty method for (1.6) with constraint

∫
ω

dx = S0:

inf
ω

E(ω)

E(ω) = Eo(ω) + μ

(∫
ω

dx − S0

)2

, μ >> 1
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We consider an equilibrium domain ω, a solution to the
direct problem (1.3), as the stationary point of E(ω). Define

ωV = ω + V (ω)

for V ∈ W 1,∞(R2; R
2). Then we obtain the following

Fréchet derivative of E(ω).

Theorem 1 Suppose that ω is smooth enough and j is a
square integrable function compactly supported in �. Then
E(ω) is Fréchet dif ferentiable and

DE(ω)(V )

=
∫

�

(
1

2μ0
|∇u| + σκ + 2μ

(∫
ω

dx − S0

))
V · νd S

(2.2)

where u is the unique solution to (1.3a)–(1.3c).

Theorem 1 is a very well-known result. The reader can find
the proof from the literature, for instance, see Sokołowski
and Zolésio (1992) and Pierre and Roche (1991).

From the gradient method for the optimization of E(ω),
it is natural to define the velocity in the level set equation,
(2.1), from DE(ω):

−v = 1

2μ0
|∇u| + σκ + 2μ

(∫
ω

dx − S0

)
(2.3)

and thus the level set equation reads

φt −
[

1

2μ0
|∇u|2 + 2μ

(∫
ω

dx − S0

)]
|∇φ|

= σ∇ ·
( ∇φ

|∇φ|
)

|∇φ| (2.4)

since

κ = ∇ · ∇φ

|∇φ| .

Then, the updated shape ωn+1 is obtained from the level set
function φn+1, which may be computed from a simple time
stepping algorithm

φn+1 = φn + 	t

[
1

2μ0
|∇un|2 + 2μ

(∫
ωn

dx − S0

)]
|∇φn|

+ 	tσ∇ ·
( ∇φn

|∇φn|
)

|∇φn|
(2.5)

We summarize the algorithm as follows.

Algorithm 1

(1) Extract ωn from given φn .
(2) Determine |∇un|2 from (1.3a)–(1.3c).
(3) Update φn+1 from (2.5).
(4) Reinitialize the level set function φn+1 to be the signed

distance function from
ψτ + sign(φn+1)(|∇ψ | − 1) = 0 (2.6a)

ψ(τ = 0, x) = φn+1(x) (2.6b)

All other steps except step (2) can be accomplished from
the standard level set technique. Here, we explain how
|∇un| is defined in R

2. Although several methods are known
to compute un in � and to extend to R

2, |∇un| near the
boundary �n is the most critical value for the level set
method. Thus we compute |∇un| at �n only, and then extend
it to the value at the closest point of �n . Now, we illustrate
the method to compute |∇un| at �n .

First, we note that

|∇un| = |∂un

∂ν
|

at the boundary �n since the tangent term vanishes. From
the fundamental solution for the Laplacian in R

2, 
(x, y) =
− 1

2π
ln |x − y|, we define

h(x) = −μ0

2π

∫
R2

ln |x − y| j (y)dy (2.7)

Then h(x) solves (1.3a) in �n . Moreover, one can show that
|∂h/∂r | = O(1/|x |2) as |x | → ∞ due to the condition
(1.2). Thus ũ := un − h solves

− 	ũ = 0 in �n (2.8a)

ũ = −h on �n (2.8b)∣∣∣∣∂ ũ

∂r

∣∣∣∣ = O(
1

|x |2 ) as |x | → ∞ (2.8c)

It follows that

∂un

∂ν
= ∂ ũ

∂ν
+ ∂h

∂ν
, x ∈ �n (2.9)

Since the boundary condition at infinity, (2.8c) implies
ũ = 0 as |x | → ∞, there is a unique solution to (2.8). There
are several methods to solve the exterior problem (2.8) and
the normal derivative ∂ ũ/∂ν =: f̃ may be computed from ũ.
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Here, we compute ∂ ũ/∂ν directly from Calderón’s projector
(see e.g. Hsiao and Wendland 2008)

f̃ (x) + 2
∫

�n

f̃ (y)
∂
(x, y)

∂ν(x)
d S(y)

= 2
∂

∂ν(x)

∫
�n

h(y)
∂
(x, y)

∂ν(y)
d S(y), x ∈ �n (2.10)

The existence and uniqueness for these types of integral
equations are well known (see e.g. Kress 1999). In general,
it has a unique solution if an additional condition

∫
�n

f̃ d S = c (2.11)

is given. Indeed, for a sufficiently large BR := B(0, R)

∫
BR\ωn

	ũdx =
∫

∂ BR

∂ ũ

∂ν
d S −

∫
�n

f̃ d S.

Sending R → ∞ yields that

∫
�n

f̃ d S = c = 0

from (2.8c). For the numerical implementation, we solve

f̃ (x) + 2
∫

�n

f̃ (y)

[
∂
(x, y)

∂ν(x)
+ 1

]
d S(y)

= 2
∂

∂ν(x)

∫
�n

h(y)
∂
(x, y)

∂ν(y)
d S(y), x ∈ �n (2.12)

since it is equivalent to (2.10) together with (2.11) for c = 0.
Numerical examples with detailed discretization schemes

are provided in Section 4.

3 Inverse shaping problem

In this section we discuss the inverse problem for (1.3) with
(1.4). That is, for a given feasible domain ω we seek the
current density function j . Unfortunately, infinitely many
solutions exist. Indeed, for any smooth function η which is
compactly supported in �, j and j − 	η/μ0 give the same
equilibrium domain. We define θ as

θ = − 1

μ0
	η. (3.1)

Since η has a compact support, it satisfies (1.3c) and

η = ∂η

∂ν
= 0 on � (3.2)

It follows that

− 	(u + η) = μ0( j + θ) in �

u + η = 0 on �∣∣∣∣∂(u + η)

∂r

∣∣∣∣ = O(
1

|x |2 ) as |x | → ∞
1

2μ0
|∇(u + η)|2 + σκ = P0 on �

provided u, j, ω and P0 satisfy (1.3). We summarize as
follows.

Proposition 1 Suppose that for a given target shape ω there
exists a function j which solves the inverse problem for (1.3)
and (1.4). Then for any θ satisfying (3.1) and (3.2) with a
smooth function η which is compactly supported in �, j +θ

also solves the inverse problem.

This non-uniqueness for the inverse problem, however,
can be fixed by restricting the class of j . We assume that j
is a finite sum of point sources,

j =
m∑

p=1

βpδ(x − x p) (3.3)

Then the uniqueness up to the sign of the source term is
obtained. More precisely, we have the following theorem.

Theorem 2 Suppose that

j =
m∑

p=1

βpδ(x − x p), m < ∞

and

j ′ =
m′∑

p=1

β ′
pδ(x − x ′

p), m′ < ∞

are solutions to the inverse problem (1.3) for given ω and
P0. Then either j = j ′ or j = − j ′.

Proof Let u and u′ be solutions to (1.3) with the source
terms j and j ′ respectively. Then at the boundary �

∣∣∣∣∂u

∂ν

∣∣∣∣ =
∣∣∣∣∂u′

∂ν

∣∣∣∣ (3.4)

We rewrite the boundary condition (3.4) on �1 ∪�2 = � as

∂u

∂ν
= ∂u′

∂ν
on �1

∂u

∂ν
= −∂u′

∂ν
on �2
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Suppose that |�1| > 0. Then w = u − u′ solves

− 	w = μ0

n∑
p=1

γpδ(x − yp) in � (3.5a)

w = 0 on � (3.5b)∣∣∣∣∂w

∂r

∣∣∣∣ = O

(
1

|x |2
)

as |x | → ∞ (3.5c)

∂w

∂ν
= 0 on �1 (3.5d)

where, j − j ′ = ∑n
p=1 γpδ(x − yp). We construct a set of

harmonic functions in �, {hq}n
q=1 such that

hq(yp) = δq,p (3.6a)

hq = 0 on �2 (3.6b)∣∣∣∣∂hq

∂r

∣∣∣∣ = O(
1

|x |2 ) as |x | → ∞ (3.6c)

We apply Green’s formula over G R := BR \ ω for
sufficiently large R to obtain

∫
G R

w	hq − 	whqdx =
∫

∂G R

w
∂hq

∂ν
− ∂w

∂ν
hqd S

μ0γq =
∫

∂ BR

w
∂hq

∂ν
− ∂w

∂ν
hqd S

The right hand side converges to 0 as R → ∞ due to the
asymptotic behaviors of w, hq , (3.5d) and (3.6c). Thus, we
conclude that γq = 0 for all q = 1, · · · , n and j = j ′.

In the case that |�1| = 0, w = u + u′ solves

− 	w = μ0

n∑
p=1

γpδ(x − yp) in �

w = 0 on �∣∣∣∣∂w

∂r

∣∣∣∣ = O(
1

|x |2 ) as |x | → ∞
∂w

∂ν
= 0 on �

where j + j ′ = ∑n
p=1 γpδ(x − yp). Here we use the

same notations for the case of |�1| > 0 to avoid using
too many notations. The idea is very similar to the previ-
ous case. From Green’s formula with harmonic function hq

satisfying (3.6a) and (3.6c) ((3.6b) is not necessary in this
case), it follows that j + j ′ = 0 as desired.

The remaining part of the proof is the existence of har-
monic functions {hq} in � satisfying (3.6). We assume that
0 ∈ ω without loss of generality by translation. Then from
condition (3.6c) and the Kelvin transform, K , it is enough
to find a harmonic function h̃q in a bounded domain �̃ such
that

h̃q(ỹp) = δq,p

h̃q = 0 on �̃2

where ỹp, �̃, and �̃2 are the image of yp, �, and �2

respectively under the Kelvin transform. Define a conformal
map Fq such that ỹp for p = 1, · · · , n, p 	= q maps to 0
and ỹq to a non-zero point, e.g.

Fq(z) =
∏
p 	=q

(z − z p)

where z = x (1) + i x (2), z p = ỹ(1)
p + i ỹ(2)

p . Let gq be a
harmonic function in Fq(�̃) satisfying

− 	gq = 0

gq = 0 on Fq(�̃1)

gq(0) = 0, gq(Fq(zq)) 	= 0

One can easily check the existence of such a function gq

from the Riemann mapping theorem and Poisson integral.
From the construction,

hq = gq ◦ Fq ◦ K

(gq ◦ Fq ◦ K )(yq)

is a harmonic function in � satisfying (3.6). ��

Now we illustrate a numerical algorithm to restore j from
the given admissible target shape. In Theorem 2 we assumed
that the lagrange multiplier P0 is given. In the direct prob-
lem, we consider P0 is an unknown variable in general.
However, in the inverse problem one may compute P0 if
the given feasible domain is smooth. From the additional
boundary condition (1.3d), the normal derivative should be

∂u

∂ν
= √

2μ0(P0 − σκ) χ�+ − √
2μ0(P0 − σκ) χ�−

for disjoint sub-boundaries �+ and �− such that � = �+ ∪
�−. Since we assume that the boundary is smooth, so is the
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normal derivative at �. Assumption (1.2) implies that P0 is
the maximum value of σκ . Indeed, κ must be attained in
an even number of points, which is a necessary condition
for the feasible domain as pointed out in Henrot and Pierre
(1989). Also the feasible domain has to satisfy

∫
�+

√
2μ0(P0 − σκ)d S =

∫
�−

√
2μ0(P0 − σκ)d S (3.7)

From these conditions, we are able to define a smooth f
on � by taking

√
2μ0(P0 − σκ) with changing its sign at

points where P0 = σκ . Then the inverse problem for (1.3)
would be

− 	u = μ0 j in � (3.8a)

u = 0 on � (3.8b)∣∣∣∣∂u

∂r

∣∣∣∣ = O(
1

|x |2 ) as |x | → ∞ (3.8c)

∂u

∂ν
= f on � (3.8d)

To determine the source term j in the form of (3.3), we
apply Green’s formula with z−n, n = 0, 1, 2, · · · . Here
we can assume that 0 ∈ ω without loss of generality by
translation. Then z−n is a harmonic function in � and thus

−
∫

G R

	uz−ndx = −
∫

∂G R

∂u

∂ν
z−n + u

∂z−n

∂ν
d S

Recall that G R := BR \ ω. From the similar argument as in
the proof of Theorem 2, we deduce that

μ0

m∑
p=1

βp(αp)
−n =

∫
�

f z−nd S

where αp = x (1)
p + i x (2)

p . Now this problem can be under-
stood as the well-known inverse source problem that is
seeking

ξ(z) =
m∑

p=1

βp

z − 1/αp
, αp, βp ∈ C, |1/αp| < R

from the measurement of ξ(z)||z|=R . This inverse source
problem has been studied in analytically as well as numer-
ically. Here, we apply the numerical method introduced in

Kang and Lee (2004). Indeed, αp, βp can be recovered in
the following manner:

Algorithm 2 (Kang and Lee 2004)

(1) For given m, compute

cn =
∫

�

f z−nd S, n = 0, 1, · · · , 2m − 1

(2) Solve the system of equations for l p, p = 1, · · · , m⎡
⎢⎢⎢⎣

c0 c1 · · · cm−1

c1 c2 · · · cm
...

...
...

cm−1 cm · · · c2m−2

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

lm
lm−1

...

l1

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

−cm

−cm+1
...

−c2m−1

⎤
⎥⎥⎥⎦

(3) Find zeros of

zm + l1zm−1 + · · · + lm = 0

which are 1/α1, · · · , 1/αm .
(4) Solve the following equation for β1, · · · βm⎡

⎢⎢⎢⎣
1 1 · · · 1

α−1
1 α−1

2 · · · α−1
m

...
...

...

α−m+1
1 α−m

2 · · · α−2m+2
m

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

β1

β2
...

βm

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

c0

c1
...

cm−1

⎤
⎥⎥⎥⎦

4 Numerical examples

Numerical solution procedures for the inverse problem are
now presented, based on the methods just discussed. From
the given target shape (see Fig. 2), we computed the curva-
ture κ and P0/σ as the maximum of κ . Then we were able
to determine the normal derivative

f = √
2μ0σ(P0/σ − κ)χ�+ − √

2μ0σ(P0/σ − κ)χ�−

(4.1)

by splitting the boundary to �± at the points where P0/σ =
κ so that f is smooth and satisfies condition (3.7). Table 1
shows computed αp, βp values via Algorithm 2 for vari-
ous initial guesses of number of point sources. Here αp and
Re βp represent the positions and intensity of point sources
and we take μ0 = σ = 1.
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Fig. 2 Example 1: Computed source and shape

The numerical results shown in Table 1 indicate that
m = 4 is acceptable for the target shape since the inten-
sities are relatively small or the distance of the source from
the target is too large to effect a change of shape in the case
of m > 4. We call these point sources “false sources”. If
the target shape is a feasible shape from a finite number
of sources, the “false source” is originated from approx-
imation error or noise. Thus “false sources” may give a
worse image in some cases. For this reason, we call them
“false sources”. However, if the target shape is not a feasi-
ble shape we may improve the computed shape by adding
more sources. This result is supported by numerical simu-
lation of the direct problem. Indeed, the target shape can
be successively restored from the numerical solution to the

inverse problem given in Table 1 as shown in Fig. 2. To solve
the direct problem, we used the level set method, Algo-
rithm 1 which was introduced in Section 2. Although it can
be improved from various modern level set techniques and
high order schemes to discretize the level set equation (2.4)
and the integral equation (2.12), we use standard techniques,
which are now briefly explained.

(1) Integral equation: To solve the integral equation
(2.12) numerically, we apply the idea described in
Kress (1998, 1999). We assume that the boundary �n

possesses a 2π -periodic parametric representation of
the form

x(t) = (x (1)(t), x (2)(t)), 0 ≤ t ≤ 2π

in a counterclockwise orientation satisfying |dx/dt | >

0 for all t . Then the integral equation (2.12) can be
rewritten as

w(t) +
∫ 2π

0
w(τ)K (t, τ )dτ = −H(t) (4.2)

Here w(t) = f̃ (x (1)(t), x (2)(t)), the kernel K = K1 +
K2 is defined as

K1(t, τ ) =

⎧⎪⎪⎨
⎪⎪⎩

1

π

dx

dt

x(t) − y(τ )

|x(t) − y(τ )|2
∣∣∣∣dy/dτ

dx/dt

∣∣∣∣ t 	= τ

1

2π

dx2

d2t

dx/dt

|dx/dt |2 t = τ

K2(τ ) = 2|dy/dτ |
Table 1 Example 1: Computed positions and intensities of point sources

m α β m α β

4 −1.5015 − 0.0021i 12.9195 + 0.0564i 5 −1.5015 − 0.0021i 12.9195 + 0.0564i

0.0021 − 1.5015i −12.9195 − 0.0564i 0.0021 − 1.5015i −12.9195 − 0.05641i

1.5015 + 0.0021i 12.9195 + 0.0564i 1.5015 + 0.0021i 12.9194 + 0.05623i

−0.0021 + 1.5015i −12.9195 − 0.0565i −0.0021 + 1.5015i −12.9195 − 0.0564i

1.4720 + 0.4066i 0.0001 + 0.0002i

8 −1.5124 + 0.0031i 13.2707 − 0.0562i 11 −1.4925 + 0.0306i 12.6175 − 2.3263i

−0.0031 − 1.5124i −13.2707 + 0.0562i −0.0306 − 1.4925i −12.6174 + 2.3261i

1.5124 − 0.0031i 13.2707 − 0.0562i 1.4925 − 0.0306i 12.6177 − 2.3250i

0.0031 + 1.5124i −13.2707 + 0.0562i 0.0306 + 1.4925i −12.6176 + 2.3266i

−1.0527 + 0.8231i −0.0134 + 0.1284i 1.2607 − 0.3059i 0.2822 + 0.1856i

−0.8231 − 1.0527i 0.0134 − 0.1284i −0.3059 − 1.2607i −0.2825 − 0.1858i

0.8231 + 1.0527i 0.0134 − 0.1284i 0.3059 + 1.2608i −0.2826 − 0.1859i

1.0527 − 0.8231i −0.0134 + 0.1284i −1.2607 + 0.3059i 0.2825 + 0.1858i

18.3741 + 26.7455i −825.0073 − 410.5541i

13.3303 − 29.9291i 761.6582 − 533.7619i

−33.2026 + 2.7973i 63.3493 + 944.3148i
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and the inhomogeneous term H(t) is given by

1

2π |dx/dt |
∫ 2π

0

dh(y(τ ))

dτ

[
2

dx

dt

x(t) − y(τ )

|x(t) − y(τ )|2
]

dτ.

(4.3)

We use the collocation method to approximate (4.2).
Indeed, for the Lagrange basis

Li (t) = 1

2n
(1 + 2

n−1∑
k=1

cos k(t − ti ) + cos n(t − ti )),

we obtain

ri+1 +
∑
j,k

K (ti+1, t j )

(∫ 2π

0
L j (τ )Lk(τ )dτ

)
rk

= −H(t j+1)

where

w(t) ≈
2n−1∑
i=0

ri Li (t).

Note that we split 2dx/dt ·(x(t) − y(τ ))/|x(t) − y(τ )|2
in (4.3) as

[
2

dx

dt

x(t) − y(τ )

|x(t) − y(τ )|2 + cot
τ − t

2

]
−

[
cot

τ − t

2

]

in order to evaluate H(t j+1).
(2) Level set equation: First order backward Euler time

stepping applied to (2.4) gives (2.5). For the spatial dis-
cretization, Godunov’s method and second order finite
difference formula were used. In one space dimension,
these schemes yield

φn+1
i = φn

i − 	t

[
max(an

i , 0)Gn,+
i + min(an

i , 0)Gn,−
i

− φn
i+1 − 2φn

i + φn
i−1

(	x)2

]

where

Gn,+
i =

√
max(max(D−

x φn
i , 0)2, min(D+

x φn
i , 0)2)

Gn,−
i =

√
max(min(D−

x φn
i , 0)2, max(D+

x φn
i , 0)2)

with

D+
x φn

i = φn
i+1 − φn

i

	x
, D−

x φn
i = φn

i − φn
i−1

	x
.

(3) Reinitialization equation: Several numerical meth-
ods for the reinitialization step, (2.6), are known. Here,
we use Godunov’s method after numerical approxima-
tion of the sign function to

sign(φn+1) ≈ φn+1√
(φn+1)2 + (	x)2

Then, the discretization of reinitialization equation can
be written as

ψn+1
i = ψn

i − 	t
[
max(Si , 0)Fn,+

i

+ min(Si , 0)Fn,−
i − Si

]

where Si = φn+1
i /

√
(φn+1

i )2 + (	x)2 and similar to

Gn,±
i , Fn,±

i are defined as

Fn,+
i =

√
max(max(D−

x ψn
i , 0)2, min(D+

x ψn
i , 0)2)

Fn,−
i =

√
max(min(D−

x ψn
i , 0)2, max(D+

x ψn
i , 0)2)

At each time step, we capture the zero level set curve using a
MATLAB function and reparameterize the curve uniformly
by a cubic spline.

In Example 1 (Fig. 2), the computed shape is obtained
after 300 iteration steps with 	x (1) = 	x (2) = 0.0234,
	t = 	x2/4, and the unit circle as the initial guess. In
the level set method, an ideal stopping criterion would be
to check the convergence of zero level set curve, but it
is difficult to implement. As a consequence, one may try
to identify the desired feature of the underlying problem
and explore some reasonable stopping criterion. Here we
are tracking the length of the zero level set curve to check
the convergence. See Fig. 3 for an evolution of shapes and
Fig. 4 for the residuals of the arc length. Also we remark
that the initial shape may not be a critical point in our
approach at least it is smooth and convex with a reasonable
size, although the initial guess may make some difference
in practice. Figure 5 shows an evaluation of shapes with
a different initial shape for Example 1. Another issue in
numerical implementation is the choice of the penalty term
μ. It is related to the intensities and distances of the sources.
If the total power acting on the molten material is increasing
then a higher μ needs to be taken. In this example, we take
μ = 700.

Table 2 shows computed positions and intensities of point
sources for a more complicated target shape (see Fig. 6)
assuming m = 20. Due to the weak intensity, only 8 points
may be considered as the source. Indeed, Fig. 6, which
shows reconstructed shapes from 8 and 20 source points
via the level set method, indicates that the other 12 points
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Fig. 3 Example 1: Evolution of
shapes
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Number of iterations =  1 Number of iterations =  38 Number of iterations =  76

Number of iterations =  113 Number of iterations =  151 Number of iterations =  188

Number of iterations =  225 Number of iterations =  263 Number of iterations =  300

are “false sources”. We provide the evolution of shapes and
residuals of arc length in Figs. 7 and 8, respectively in the
case of 8 points. Here we use 	x (1) = 	x (2) = 0.0313,
	t = 	x2/4, and μ = 100.

5 Interior shaping problem

In this section, we briefly discuss the interior problem gov-
erned by (1.5). A simple modification of the proof for

Theorem 2 gives the uniqueness for the interior inverse
problem.

Theorem 3 Suppose that

j =
m∑

p=1

βpδ(x − x p), m < ∞

Fig. 4 Example 1: Residuals of
arc length
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Fig. 5 Example 1: Evolution of
shapes with a different initial
shape

Number of iterations =  1 Number of iterations =  38 Number of iterations =  76

Number of iterations =  113 Number of iterations =  151 Number of iterations =  188

Number of iterations =  225 Number of iterations =  263 Number of iterations =  300
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and

j ′ =
m′∑

p=1

β ′
pδ(x − x ′

p), m′ < ∞

are solutions to the inverse problem (1.5) for given ω and
P0. Then either j = j ′ or j = − j ′.

We are also able to recover the source term j from the
similar algorithm described in the previous section. The
only difference is that

cn =
∫

�

f i znd S

in the first step of Algorithm 2, and thus we can recover
(αp, βp) instead of (1/αp, βp) from Algorithm 2.

Table 3 shows the computed intensities and positions of
acceptable 24 sources out of 60 for the target shape, known
as Kite shape (see Fig. 9). Similar to (4.1) we define

f i = √
2μ0σ(P0/σ + κ)χ�+ − √

2μ0σ(P0/σ + κ)χ�−

(5.1)

and take P0 as the minimum of κ with μ0 = σ = 1.
This result is verified by numerical simulation. In Fig. 9,
we compare the actual shape and recovered shape from

Table 2 Example 2: Computed positions and intensities of point sources

α β α β

−0.4947 − 0.3433i −0.0000 − 0.0000i −0.6386 − 0.1123i 0.0000 + 0.0000i

0.6205 + 0.1446i 0.0000 − 0.0000i 0.5435 + 0.3594i 0.0000 + 0.0000i

−0.9870 − 0.0221i −0.0000 − 0.0001i −1.1681 + 0.3220i −0.0007 − 0.0149i

−1.5014 − 0.0008i −7.8130 + 0.0155i −1.2193 − 0.8635i 0.0187 + 0.0375i

−0.9806 − 1.4899i −2.4207 − 0.1477i 0.0044 − 1.5003i −2.6296 − 0.1121i

0.4433 − 1.2023i −0.0009 − 0.0009i 1.0531 + 0.0174i 0.0003 + 0.0004i

1.1625 − 0.3327i 0.0026 + 0.0128i 0.9966 − 1.5404i −2.8948 + 0.1672i

1.5016 + 0.0017i 7.8132 + 0.0056i −0.4140 + 1.1930i 0.0009 + 0.0003i

−0.9969 + 1.5385i 2.8785 − 0.1578i −0.0042 + 1.5002i 2.6269 + 0.1072i

1.1686 + 0.8772i −0.0039 − 0.0303i 0.9821 + 1.4874i 2.4223 + 0.1173i
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Fig. 6 Example 2: Computed
sources and shapes with a 8
source points, b 20 sources
points
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Fig. 7 Example 2: Evolution of
shapes for the case of 8 points
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Fig. 8 Example 2: Residuals of
arc length for the case of 8
points

0 50 100 150 200 250 300 350 400 450 500
0

0.002

0.004

0.006

0.008

0.01

0.012

Number of iterations

R
es

id
u

al
 o

f 
ar

c 
le

n
g

th

Table 3 Example 3: Computed positions and intensities of point sources

α β α β

−0.7169 − 0.5407i −0.2852 − 0.0265i −0.7127 − 0.5366i −0.2051 − 0.0206i

−0.7039 − 0.5282i −0.1807 − 0.0216i −0.6903 − 0.5151i −0.1701 − 0.0261i

−0.6718 − 0.4972i −0.1686 − 0.0331i −0.6481 − 0.4739i −0.1741 − 0.0422i

−0.6190 − 0.4447i −0.1851 − 0.0535i −0.5840 − 0.4081i −0.2006 − 0.0687i

−0.5425 − 0.3624i −0.2203 − 0.0908i −0.4940 − 0.3044i −0.2445 − 0.1260i

−0.7169 + 0.5406i 0.2967 − 0.0283i −0.7122 + 0.5361i 0.2137 − 0.0222i

−0.7024 + 0.5266i 0.1890 − 0.0237i −0.6873 + 0.5118i 0.1795 − 0.0292i

−0.6664 + 0.4915i 0.1800 − 0.0376i −0.6397 + 0.4649i 0.1883 − 0.0485i

−0.6066 + 0.4311i 0.2019 − 0.0631i −0.5672 + 0.3883i 0.2192 − 0.0846i

−0.5217 + 0.3335i 0.2373 − 0.1199i −0.4373 − 0.2283i −0.2762 − 0.1898i

−0.4725 + 0.2613i 0.2434 − 0.1837i −0.3711 − 0.1182i −0.3249 − 0.3557i

−0.4336 + 0.1692i 0.1688 − 0.2269i −0.3840 + 0.0813i 0.3228 − 0.2662i

Fig. 9 Example 3: Computed
source and shape
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Fig. 10 Example 3: Evolution
of shapes
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Number of iterations = 38 Number of iterations = 76

Number of iterations = 113 Number of iterations = 151 Number of iterations = 188

Number of iterations = 225 Number of iterations = 263 Number of iterations = 300

the numerical solution to the inverse problem. We modify
the level set method for the exterior problem to solve the
direct interior problem. Indeed, the velocity in the level set
equation for the interior problem is given by

−vi = − 1

2μ0
|∇ui | + σκ + 2μ

(∫
ω

dx − S0

)

and the integral equation (2.12) is also changed to

f̃ i (x) − 2
∫

�n

f̃ i (y)
∂
(x, y)

∂ν(x)
d S(y)

= −2
∂

∂ν(x)

∫
�n

h(y)
∂
(x, y)

∂ν(y)
d S(y), x ∈ �n

Fig. 11 Example 3: Residuals
of arc length
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Table 4 Example 4: Computed positions and intensities of point sources

m α β m α β

2 0.2808 + 0.0011i −14.7283 + 0.1120i 3 0.2808 + 0.0011i −14.7283 + 0.1120i

−0.2808 − 0.0011i 14.7283 − 0.1120i −0.2808 − 0.0011i 14.7283 − 0.1120i

(11.1708 + 7.1949i)1013 0.0000 + 0.0000i

6 0.2958 + 0.0000i −13.0906 + 0.0007i 8 0.2959 + 0.0000i −13.0862 + 0.0001i

−0.2958 − 0.0000i 13.0906 − 0.0007i −0.2959 − 0.0000i 13.0862 − 0.0001i

−0.0066 − 0.2719i −0.0134 − 0.4400i 0.0066 + 0.2826i 0.0091 + 0.2567i

−0.0041 − 0.1686i −0.0303 − 0.8515i 0.0059 + 0.2199i 0.0070 + 0.5787i

0.0066 + 0.2719i 0.0134 + 0.4400i 0.0048 + 0.1187i 0.0291 + 0.5440i

0.0041 + 0.1686i 0.0303 + 0.8515i −0.0066 − 0.2826i −0.0091 − 0.2567i

−0.0059 − 0.2199i −0.0070 − 0.5787i

−0.0048 − 0.1187i −0.0291 − 0.5440i
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Fig. 12 Example 4: Computed source and shape

which leads to

wi (t) +
∫ 2π

0
wi (τ )K1(t, τ )dτ = H(t)

The recovered shape in Fig. 9 is obtained after 300 iteration
steps. See also Figs. 10 and 11 for the convergence history.
Here we use 	x (1) = 	x (2) = 0.0313, 	t = 	x2/4, and
μ = 5.

Next, we consider an example which has singularities.
Table 4 shows the solution to the inverse problem for the
target shape, which is a union of two circles centered at
(±1/

√
3π + 2, 0) with radius

√
2/(3π + 2) as shown in

Fig. 12. We let �± denote the boundaries of the domain in
the right and left half plains. We define the normal deriva-
tive as

f i = √
2μ0σ(P0/σ + κ)χ�+ − √

2μ0σ(P0/σ + κ)χ�−

(5.2)

Table 5 Example 5: Computed positions and intensities of point sources

m α β m α β

2 −0.3531 − 0.0000i −9.8143 + 0.0000i 8 −0.2959 + 0.0000i −13.0852 − 0.0000i

0.3531 − 0.0000i −9.8143 − 0.0000i 0.2959 + 0.0000i −13.0852 + 0.0000i

4 −0.2981 − 0.0000i −12.6512 + 0.0000i −0.0000 + 0.2787i 0.3346 − 0.0000i

0.2981 − 0.0000i −12.6512 − 0.0000i −0.0000 + 0.2039i 0.9850 − 0.0000i

0.0000 − 0.1870i 2.8369 − 0.0000i −0.0000 − 0.2787i 0.3346 + 0.0000i

−0.0000 + 0.1870i 2.8369 + 0.0000i −0.0000 − 0.2039i 0.9850 + 0.0000i

−0.0000 + 0.0761i 1.9513 − 0.0000i

−0.0000 − 0.0761i 1.9513 + 0.0000i
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with κ = √
(3π + 2)/2 and μ0 = σ = 1, although � has

singularities at the intersections of the two circles where κ

does not exist. Note that in this example, we cannot deter-
mine P0 since the curvature is not smooth. Indeed, one may
compute the inductors for any P0 > 0, which gives the same
target shape from a simple change of variables. However,
for less P0 values, the rate of convergence for the direct
problem would be slow. Here we take P0 = 10. Similar
to other examples, there are false sources for m > 2 as
indicated in Table 4. The numerical result for m = 2 is
verified by the solution to the direct problem as shown in
Fig. 12.

We remark that condition (1.2) is not required in the inte-
rior problem. Indeed, (1.2) is essential for the uniqueness
for the exterior boundary value problems. However, in the
case of the interior problem, this condition can be removed.
As a consequence,

∫
�

f i d S needs not vanish and this is con-
venient for defining the normal derivative f i . For example,
for the target shape given above we can specify the normal
derivative as a constant,

f i = √
2μ0σ(P0/σ + κ)

Table 5 shows that computed αp, βp with this f i . In this
case, there are no false sources and a large number of source
points may be needed to restore the target shape as shown in
Fig. 13. Indeed, the uniqueness result, Theorem 3, implies
that infinitely many sources are required in this approach if
the target is a feasible shape by a finite number of source
points.
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1

 

 

Target Shape
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Fig. 13 Example 5: Computed source and shape. The indicated source
points are for the case m = 8

6 Conclusion

In this paper we discussed the exterior and interior inverse
problems arising from magnetic shape forming in 2-
dimensional space. We showed for a given target shape there
are at most two density functions, j and − j , generating the
given shape if the density function is known a priori by a
finite sum of point sources and the total density is 0. Under
these assumptions we proposed a numerical algorithm based
on the idea in Kang and Lee (2004), through which we
were able to recover the density functions for admissible
target shapes. We remark that our algorithm for the inverse
problem is a non-iterative and direct method. Our numeri-
cal results have been verified by comparing the given target
shapes and the numerical solutions to the direct problem
from computed source terms. As for the direct problem
solver, we introduced the level set method. The level set
approach for the direct problem is more applicable and of
interest itself mathematically.

It is an interesting and challenging problem as well as an
important problem from a practical point of view to solve
the inverse problem for arbitrary domains or non-admissible
domains. In this case, we have to carefully define the normal
derivative ∂u/∂ν and then apply our algorithm to restore the
current density function in some optimal sense, which is our
ongoing work.

References

Allaire G, Jouve F, Toader A-M (2002) A level-set method for shape
optimization. C R Math Acad Sci Paris 334(12):1125–1130

Allaire G, de Gournay F, Jouve F, Toader A-M (2005) Structural opti-
mization using topological and shape sensitivity via a level set
method. Control Cybern 34(1):59–80

Barkatou M, Seck D, Ly I (2006) An existence result for an interior
electromagnetic casting problem. Cent Eur J Math 4(4):573–584
(electronic)

Canelas A, Roche JR, Herskovits J (2009a) Inductor shape opti-
mization for electromagnetic casting. Struct Multidisc Optim
39(6):589–606

Canelas A, Roche JR, Herskovits J (2009b) The inverse electromag-
netic shaping problem. Struct Multidisc Optim 38(4):389–403

Coulaud O, Henrot A (1994) Numerical approximation of a free
boundary problem arising in electromagnetic shaping. SIAM J
Numer Anal 31(4):1109–1127

Crouzeix M (1991) Variational approach of a magnetic shaping prob-
lem. Eur J Mech B Fluids 10(5):527–536

Dambrine M, Pierre M (2000) About stability of equilibrium shapes.
M2AN Math Model Numer Anal 34(4):811–834

Henrot A, Pierre M (1989) Un problème inverse en formage des
métaux liquides. RAIRO Modél Math Anal Numér 23(1):
155–177

Henrot A, Pierre M (1990) About critical points of the energy in
an electromagnetic shaping problem. In: Boundary control and
boundary variation (Sophia-Antipolis, 1990), Lecture notes in
control and inform. sci., vol 178. Springer, Berlin, pp 238–252



Inverse and direct magnetic shaping problems 301

Hsiao GC, Wendland WL (2008) Boundary integral equations. In:
Applied mathematical sciences, vol 164. Springer, Berlin

Kang H, Lee H (2004) Identification of simple poles via bound-
ary measurements and an application of EIT. Inverse Probl
20(6):1853–1863

Kress R (1998) Numerical analysis. In: Graduate texts in mathematics,
vol 181. Springer, New York

Kress R (1999) Linear integral equations. In: Applied mathematical
sciences, vol 82, 2nd edn. Springer, New York

Novruzi A (2004) C2,α existence result for a class of shape
optimization problems. SIAM J Control Optim 43(1):174–193
(electronic)

Novruzi A, Roche JR (1995) Second order derivatives, Newton
method, application to shape optimization. Research Report RR-
2555, INRIA

Osher S, Fedkiw R (2003) Level set methods and dynamic implicit
surfaces. In: Applied mathematical sciences, vol 153. Springer,
New York

Pierre M, Roche J-R (1991) Computation of free surfaces in the elec-
tromagnetic shaping of liquid metals by optimization algorithms.
Eur J Mech B Fluids 10(5):489–500

Pierre M, Roche J-R (1993) Numerical simulation of tridimen-
sional electromagnetic shaping of liquid metals. Numer Math
65(2):203–217

Pierre M, Rouy E (1996) A tridimensional inverse shaping problem.
Commun Partial Differ Equ 21(7–8):1279–1305

Sethian JA (1999) Level set methods and fast marching methods. In:
Cambridge monographs on applied and computational mathemat-
ics, vol 3, 2nd edn. Cambridge University Press, Cambridge.
Evolving interfaces in computational geometry, fluid mechanics,
computer vision, and materials science

Shercliff JA (1981) Magnetic shaping of molten metal columns. Proc
R Soc Lond, A 375:455–473

Sokołowski J, Zolésio J-P (1992) Introduction to shape optimiza-
tion. In: Springer series in computational mathematics, vol 16.
Springer, Berlin. Shape sensitivity analysis


	Inverse and direct magnetic shaping problems
	Abstract
	Introduction
	Level set method
	Inverse shaping problem
	Numerical examples
	Interior shaping problem
	Conclusion
	References



