
ECMI Modelling Week, July 17�24, 2016, So�a, Bulgaria

Group 10

Volatility stripping in �xed income
derivatives

Adriana Cola

Università degli studi di Milano, Italy
adrianacola89@gmail.com

Mirko Drazic

University of Novi Sad
mirkodrazic93@gmail.com

Slavi Georgiev

Angel Kanchev University of Ruse
georgiev.slavi.94@gmail.com

Joachim Luebbers

Technical University of Dresden
Joachimluebbers@web.de

Olavur Mortensen

Technical University of Denmark
olavurmortensen@gmail.com

Riyaz Mouhamad

Sup-Galilée - University of Paris 13
m.riyaz.22@gmail.com

Instructor: Gerardo Oleaga

Complutense University of Madrid
goleaga@ucm.es

1

2 Volatility stripping

Abstract. The aim of our work is to estimate the (Black) volatili-
ties of caplets through the �at volatilities of caps quoted in the market.
This process is called caplet stripping and involves non-linear numerical
optimization techniques and/or multidimensional root �nding methods.
Some smoothness criteria are implemented to regularize the ill-posed op-
timization problem.

10.1 Preface

This report sums up the concepts learned, opinions and results of the group work
10 at the ECMI-Modelling Week 2016 in So�a, Bulgaria. Guided by Gerardo
Oleaga we had the opportunity to improve our knowledge about �nance instru-
ments in a very professional environment. Grateful about the chance to been
part of the Modelling Week we want to thank everybody who made it possible
and especially Gerardo Oleaga for his patience and inspiring guidance.

10.2 Introduction

This report can mainly be divided in four main parts. First there will be given a
short explanation of the �nancial de�nitions and the Bootstrapping method. The
second Part deals with the interpolation, �lling in the data and the optimization
of the algorithm. The third part provides a deeper look on the code and the
language Julia itself. The discussion and outlook concludes the report.

3 ECMI Modelling Week 2016, So�a, Bulgaria

10.3 Financial Instruments

In order to understand the pricing of a Cap/Floor basic knowledge about these
�nance instruments are needed.

A Cap/Floor is a Call/Put-Option where its underlying is an interest rate.
This means that the buyer receives payments at the end of each period in
which the interest rate exceeds/deceeds the agreed strike price. An interest
rate cap/�oor is designed to provide insurance against the rate of interest on
the �oating-rate note rising above a certain level. Figure 10.1 shows an example
of a cap/�oor.

Figure 10.1: Example of a cap with the strike 5% and a �oor with strike 2%

A Cap is simply the sum of its constituent caplets. For example if we have a
Cap on the Libor rate with Strike 5% which has a 2 years maturity that pays at
the end of each six months period. Then, the Cap is composed by four Caplets.

10.3.1 Pricing Caps and Floors

The following part lean on the paper, Eight ways to strip your caplets: An intro-

duction to caplet stripping. We just explain the way of pricing a cap through its
caplets. The case of a Floor and its �oorlets is similar. The cap price is simply
the sum of the caplet prices with a common strike K and it's fair value with
covering the period Tα to Tβ with nominally payments at Tα+1, Tα+1, ..., Tβ−1

and Tβ :

Vcap(t,K, Tα, Tβ) =

β−1∑
i=α

Vcaplet(t,K, Ti)

=

β−1∑
i=α

P (t, T pi+1)τiBlack(Fi(t),K, Ti, σ(K,Ti), χ)

To fully understand this equation the pricing of caplets needs to be understood.
Therefore, the following notation is used:

• the value L(Ti, Ti+1) ≡ Li with the Libor rate from the period Ti to Ti+1

�xing at T fi (normaly two days before Ti)

• the forward rate F (t, Ti, Ti+1) ≡ Fi(t) for this Libor with t ≤ T fi .

4 Volatility stripping

• the year fraction τi for the period with respect to the Day Count Convention

• χ is either +1 for caplets or −1 for �oorlets.

The payo� of a caplet is structured like a call option on a Libor rate:

payo�caplet = τi(χ[Li −K])+

The payment for a standard caplet starting at Ti is done at Ti+1.
The Libor rate �xes at Ti, so:

Vcaplet(Ti,K, Ti) = P (Ti, T
p
i+1)τi(χ[Li −K])+

• P (Ti, Ti+1) is the discount factor from the payment time.

Now the fair value is:

Vcaplet(t,K, Ti) = P (t, Ti+1)τiE
Ti+1

t [(χ[Li −K])+]

• ETi+1

t [(χ[Li −K])+] is the expectation in the Ti+1 forward measure

Therefore

Fi(t) = ETi+1

t [Li]

The price of caplets is given by the Black formula through the implied volatilities
σ(K,Ti) (for a particular strike and expiry):

Vcaplet(t,K, Ti) = P (t, Ti+1)τiBlack(Fi(t),K, Ti − t, σ(K,Ti), χ) (10.1)

with

Black(F,K, T, σ, χ) = χ(Fφ(χd1)−Kφ(χd2))

and

d1 =
log(FK) + σ2T

2

σ
√
T

; d2 = d1 − σ
√
T

The value of a cap is now obtained as the sum over the price of the caplets, each
one priced through its corresponding Black volatility.

Under Black's model, �nancial derivatives prices are determined by the volatil-
ity of the underlying variable. In the �xed income market, the volatility of the
forward interest rates are basic inputs in the pricing formulas but unfortunately,
this parameters are not directly observable in the market, and they must be in-
ferred from quoted prices of complex contracts. Therefore we need a procedure
to obtain this parameters from quoted market prices.

Nowadays negative forward rates/strikes are appearing for some currencies
and Black's model cannot handle them because the logarithm term of the expres-
sion (FK) is not de�ned for negative values. Therefore in that cases a remodeling
of the pricing formula is needed.

5 ECMI Modelling Week 2016, So�a, Bulgaria

10.3.2 Cap "�at" Volatility

For the market observed price of a cap with strike K the implied �at volatility
is the single value given to all the constituent caplet's volatilities which recovers
the cap price, that is:

Vcap(t,K, Tα, Tβ) =

β−1∑
i=α

P (t, T pi+1)τiBlack(Fi(t),K, Ti, σ(K,Ti), χ)

so the value σ(K,Tα, Tβ) solves the equation above. The price of a one year
cap will generally be di�erent from a two year cap because of the di�erence in
�at volatility values, even for the same strike. Hence the cap �at volatility is an
alternative quoting convention to price.

10.4 Processing and cleansing data

For the purpose of our work, we will use the data for cap volatilities provided
in [1]. Those are real market data, so we have to �ll and further process the raw
values to make �t the numerical procedure.

Firstly, we have data where the outliers have been removed - simply because
they violate the data consistency. Therefore, holes appear in the �at volatility
matrix provided. In order to �x it, me make several "Laplacian" iterations to �ll
in the holes. The main idea is to obtain a data set where the holes are �lled with
a weighted mean of the surrounding data. In the �rst iteration, holes are �lled
with zero values. After �ve or six turns, the matrix is stabilized (data outside
the holes are not modi�ed). We may adjust the procedure giving more weight
in the direction of strikes than cap maturities or vice versa. We needed to be
careful when processing values on indices that are either borderline or when their
neighbours are not equally distanced from the current value. Any small deviation
could ruin the root �nding or optimisation algorithm.

For the sake of completeness, for our data we needed about �ve iterations
to get satisfying results. This value is derived empirically derived, checking that
further changes of the data after the �fth or sixth iteration are negligible small,
so the result �ts our needs.

10.5 Bootstrapping

So, as we mentioned before, the market quotes a set of cap prices, ordered by
strike and maturity, through their �at volatilities. We aim to �nd the implied
volatilities for each caplet in a cap.

We implemented �rstly the Bootstrapping method, because it is very fast
and simple. The method allows to �nd a rapid solution, provided that it exists.
Moreover, cap prices are recovered exactly, so there is no arbitrage. The proce-
dure is as follows: First we order the caps by the size of maturity, starting from
the shortest one. Then we �nd the price di�erences for the caps � these are the
prices of some sub-caps, formed by two or more caplets. The �rst partition is

6 Volatility stripping

the same as the shortest cap. The partitions obtained consist of caplets, so they
can be priced as caps, using the aforementioned formulae.

We have to match the price of the cap partitions with caplet volatilities �
one side gives us the market price and the other gives us the price in terms
of volatilities (through Black formula). We can then apply a 1-D root �nding
method for the price di�erence in order to obtain the implied volatility of the
caplets.

Our �implied� volatility (which is assigned to the whole partition) appear to
be a �at volatility of these set of caplets.

The procedure can be improved making a linear interpolation of the volatility
in order to get di�erent values for each caplet, linked by a straight line. We can
apply again a root �nding algorithm for the slope coe�cient and derive values,
which are consistent (ie. continuous) with the corresponding volatility of the
previous caplet.

Figure 10.2: Volatility smile

Now we will look at the behaviour of volatilities depending on strikes and
maturities. On Figure 10.2 we have the interpolated volatility curve for di�erent
strikes, observing the so called �volatility smile�. We have �xed the maturity
to 4.0 years, which is an intermediate value. As we will see later, for very small
expiries we could get a �sad� smile.

On Figure 10.3 we observe the behavior of the volatility for a �xed strike and
subsequent values of maturities, the term structure. We see how it looks like for
di�erent strikes from the volatility surface, discussed in Section 10.6.

Before continuing, let us mention one signi�cant di�erence between the two
graphs. While the term structure is somewhat smooth, the volatility smile looks
rather implausible. The explanation is simple � there is no coupling across strike
values to impose any smoothness in that direction.

7 ECMI Modelling Week 2016, So�a, Bulgaria

Figure 10.3: Term structure

10.6 Interpolation

On Figure 10.4 we can see how volatility depends on independent values of strikes
and maturities. Our goal is almost achieved, but there is a problem � the surface
is too rough and peaky.

Figure 10.4: Volatility surface

In order to make it smoother, we �rst tried to do a polynomial interpola-
tion between market data. If we apply a linear interpolation, the result will be
the same as the previous one, so this is a matter of a little interest. Quadratic
or cubic interpolations would suit better, but the polynomial interpolations are
not appropriate in our case, because higher order polynomials produce big os-
cillations. The best results were obtained through cubic spline interpolation, as
shown in the �gure.

The smoothed plot (10.5) uses more knots than the market values, which are

8 Volatility stripping

Figure 10.5: Volatility surface � smoothed

equally distributed. The latter plot is much smoother and both surfaces have a
good property � they �t exactly the market data. They do not induce arbitrage
but we loose control of the data parameters. In the following, we will apply
methods that could adjust accuracy and smoothness in a more suitable way.

10.7 Optimization - Penalty approach

First of all, we consider a function F : Rm 7→ Rn which takes a vector ~σ of m
implied volatilities and returns a vector of n cap values. Hence, ~σ 7→ F (σ) = ~p.
In our case the values are m = 19 and n = 7, so the problem is ill-posed and does
not have a unique solution. To deal with this, we are imposing an additional
penalty term G, which represents a scalar measure of smoothness.

Therefore, our problem consists of minimising

‖F (~σ)− ~p‖2 + λG(~σ)

for some given λ to be �xed. Term G(~σ) is of the form ~σTP~σ where the P is
some penalty matrix such that the whole term ~σTP~σ is close to zero only if ~σ
is perfectly smooth, and increases the less smooth ~σ is. The second derivative
encodes how the slope of the function changes, so actually it provides a measure
of the curvature of the graph. The curvature will be bigger for bigger second
derivatives. This is why we select the penalty matrix as P = DTD where D
is the 2nd order discrete di�erentiation operator such that D~σ is the vector of
central di�erence estimates

~σ(t− 1)− 2~σ(t) + ~σ(t+ 1)

9 ECMI Modelling Week 2016, So�a, Bulgaria

of d
2~σ
d2t

in 17 middle dots. Hence, D is a tridiagonal matrix

D =

0 0 0 0 · · · 0
1 −2 1 0 · · · 0
0 1 −2 1 · · · 0
...

...
...

. . .
...

...
0 · · · · · · 1 −2 1
0 · · · · · · · · · · · · 0

So with the smoothness criterion, the penalty term becomes:

λ ·G(~σ) = λ~σTP~σ = λ~σTDTD~σ = λ · ‖D~σ‖2

The weight of the smoothness of the volatility surface in the optimization proce-
dure will depend on the value of λ. For bigger λ, the penalty term becomes more
signi�cant than the �rst term, so we will obtain smoother surfaces, but then the
�rst term will possibly be far from zero, so we will have some errors in cap prices.
This implies arbitrage opportunities. As λ decreases towards 0, we will obtain
accurate cap prices, but we should expect our surface to be less smooth.

In �gure 10.6, we observe two pictures obtained by using the penalty method.
The upper one is called "volatility smile", and it represents the volatility values
depending on strikes, while the lower one, called "term structure volatility",
represents the volatility depending on caplet maturities. Also we need to point
out that the upper plot is taken from the surface for caplet expiry T = 4 and
that the lower plot corresponds to the strike value K = 1.5%

Figure 10.6: Volatility smile and Term structure volatility

10 Volatility stripping

In �gure 10.7, we show two surfaces, one obtained from the bootstrapping
method and one from the penalty method. It is obvious that the results from
the penalty method are smoother, especially if we pay attention to the term
structure, for the smallest strike value 0.5%.

Figure 10.7: Surfaces from bootstrapping method and penalty method

Finally, in �gure 10.8 we represent three graphs which summarize our work.

The top graph in �gure 10.8 corresponds to the bootstrapping method. The
results are not smooth, but we have obtained completely exact prices. The middle
graph in �gure 10.8 is the penalty method, corresponding to the value of lambda
that is too high. In this case the smoothness is achieved, but we have got too
high price error. The bottom graph in �gure 10.8 is the optimal, we obtained a
smooth curve, combined with a low pricing error.

10.8 Implementation

This section describes a few details of the implementation of the models.

10.8.1 Julia

Julia is a fairly new programming language that has adopted features from many
of the most popular programming languages today. Some of these features are:
dynamic typing and high level of abstraction like Python, performance (almost)
like C, multiple dispatch methods, metaprogramming like Lisp, and more.

The primary downside with Julia at the moment is the lack of well tested
specialized libraries. In this project, we only needed a plotting library, an op-
timization library and a simple statistics package, all of which Julia does pro-
vide (PyPlot, Optim and Distributions, respectively); therefore, Julia �ts well to

11 ECMI Modelling Week 2016, So�a, Bulgaria

Figure 10.8: bootstrapping method, penalty method for λ = 0.5, penalty method
for λ = 10−6

this project. Furthermore, Julia allows calling C functions directly, and calling
Python functions requires little work.

10.8.2 User-de�ned types

Julia allows user-de�ned types, and we took advantage of that in our project. To
make caps and caplets easier to deal with, we de�ne some types. The caplet is
de�ned as

type Caplet

strike :: Float64

S :: Float64

T :: Float64

end

and the cap is de�ned as

type Cap

strike :: Float64

dates :: Vector{Float64} # size n+1

end

As we shall see later on, this allows us to work with caps and caplets in a
much more intuitive manner, for example by passing them directly to functions
that return the price by dispatching in terms of the corresponding type.

12 Volatility stripping

10.8.3 Multiple dispatch

Julia identi�es a function not only by its name, but by the input types too. This
way, we can de�ne a single function with several methods, where each method
accepts di�erent arguments. Each method can handle the arguments di�erently,
but can also behave similarly.

We de�ned one pricing function for the caplets,

price(t::Float64, disc::Float64, c::Caplet,

forward::Float64, vol::Float64)

and another pricing function for the caps,

price(t::Float64, disc::Vector{Float64}, cap::Cap,

forwards::Vector{Float64}, vol::Vector{Float64})

The di�erence between these functions is that the former accepts a caplet,
and the latter accepts a cap, and the forward rate and �at volatilities are now
vectors of 64 bit �oats. Julia will note the inputs passed and call the correct
method automatically.

Using multiple dispatch, we do not need to think about which pricing function
to call, only what the correct inputs are. Furthermore, we avoid exceedingly long
function names such as pricing_caplets, pricing_caps, pricing_caplets2,
etc.

10.8.4 The Optim package

The Optim1 package contains some optimization procedures that we used to �nd
a smoother volatility surface. We did not implemented the gradient for the func-
tion we wanted to minimize, but luckily Optim is able to automatically estimate
the derivatives using �nite di�erences. Alternatively, one can use the keyword
"autodi�" to enable automatic di�erentiation which yields exact gradients, al-
though we did not take advantage of this functionality.

10.8.5 Methods that modify the input values

When �lling in missing data, as explained in a previous section, we took advan-
tage another functionality of Julia that allows us to directly modify the inputs
of a function. We de�ned the function

filldata!(x::Vector{Float64},y::Vector{Float64},

data::Array{Float64},iter::Int)

The exclamation mark (!) is a convention used in Julia stating that the input
variables may be modi�ed by the procedure. This is usually called "pass-by-
reference", and some languages allow only this kind of behavior, while others

1http://www.juliaopt.org/Optim.jl/latest/

13 ECMI Modelling Week 2016, So�a, Bulgaria

allow only "pass-by-value". Julia allows our software to be organised in both
ways, although strictly speaking it is "pass-by-reference" in both cases.

If the "data" variable becomes very large, this will be very useful, as we would
not need to allocate another copy of this array.

10.9 Conclusion

We have implemented several methods to obtain the volatilities of individual
caplets (caplet stripping). In addition, we have implemented two methods for
smoothing the volatility surface: the interpolation method and the penalty method.

The main advantage of the penalty method is the possibility to obtain a well
controled smooth surface. Unfortunately, as we give a bigger value to λ we see
the increasing price error. The moral is: "If you want more smoothness you have
to pay with higher errors in recovering market prices."

To sum up, we have learned the meaning of some �xed income market deriva-
tives (Caps and Caplets), the way they are priced and quoted through Black
volatilities, and hard technical problems arising from simple questions. We re-
viewed some elementary (1-D root �nding) methods, and other more advanced
(non linear optimization with penalty terms). Further, we implemented all the
methods from scratch, using an interesting and rather new computing language,
which demanded an extra e�ort, but it was worth learning.

14 Volatility stripping

Bibliography

[1] R. White, Y. Iwashita, Eight ways to strip your caplets: An introduction to
caplet stripping, OpenGamma Quantitative Research nr. 24, 2014.

[2] Julia language documentation: http://docs.julialang.org/en/

release-0.5/

