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Abstract

This paper considers a firm that faces a declining profit stream for its established

product. The firm has the option to invest in a new technology with which it

can produce an innovative product while having the option to exit at any point

in time. In the presence of an exit option, earlier work determined the optimal

timing to invest, where it was shown that higher uncertainty might accelerate

investment timing.

In the present paper the firm also decides on capacity. This extension leads

to monotonicity, i.e. higher uncertainty delays investment timing. We also find

that higher potential profitability of the innovative product market increases the

incentive to invest earlier, where, however, we get the counterintuitive result

that the firm invests in smaller capacity. Finally, if quantity has a smaller

negative effect on price, the firm wants to acquire a larger capacity, which in

some situations results in an investment delay.
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1. Introduction

The photography industry underwent a disruptive change in technology dur-

ing the 1990s when the traditional film was replaced by digital photography (see

e.g. The Economist January 14th 2012). In particular Kodak was largely af-

fected: by 1976 Kodak accounted for 90% of film and 85% of camera sales in5

America, making it the owner of a near-monopoly in America. While Kodak’s

revenues were nearly 16 billion in 1996, in 2011 it has decreased to 6 billion1.

Kodak tried to get (squeeze) as much money out of the film business as

possible and it prepared for the switch to digital film. The result was that

Kodak did eventually build a profitable business out of digital cameras, but it10

lasted only a few years before camera phones overtook it. According to Mr.

Komori, the former CEO of Fujifilm of 2000-2003, Kodak aimed to be a digital

company, but that is a small business and not enough to support a big company.

’For Kodak it was like seeing a tsunami coming and there is nothing you can do

about it’, according to Mr. Christensen in The Economist (January 14th 2012).15

This paper focuses on investment and exit decisions of a firm that has to

deal with technological change. The above example showed that this can be a

burden. However, there are enough examples of firms for which technological

change brought fruitful times in terms of profits. One example is Activision, a

successful company in the video game industry, where innovation plays a big20

role. Activision saw its worldwide sales increase with $650m in the first five

days, when the new video game “Call of Duty: Black Ops” replaced its prede-

cessor, “Call of Duty: Modern Warfare 2”, in November 2010 (The Economist,

December 10th 2011). Another example is the iPhone launched by Apple which

was described by Time Magazine as ’the invention of the year 2007’. Apple’s25

2011 net income was $7.31bn in the three months up to June 25th, 125% higher

than the previous year, making it the firm’s record quarterly profit. Another

1See, for example, the Wall Street Journal on January 19, 2012

(http://blogs.wsj.com/deals/2012/01/19/kodak-bankruptcy-by-the-numbers/).
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quarterly record was the revenue during that time period, a revenue of $28.6bn.

We study the problem of a price setting firm that produces with a current

technology that faces a declining sales volume. The firm can either exit this30

industry or invest in a new technology with which it can produce an innova-

tive product. The firm is a monopolist in a market characterized by uncertain

demand, where the inverse demand function depends on a geometric Brownian

motion process. Demand for the established product is characterized by a neg-

ative drift. Upon investment the firm is able to produce a new product, the35

demand of which is higher than demand of the established product. However,

demand could still have a negative drift.

The question we study is when and if it is optimal to enter the innovative

product market. In case the firm decides to launch the new product we also

analyze the optimal capacity choice. Besides adopting the new technology, the40

firm also has the option to exit the market at any point in time. It can exit if it

considers that the potential of the new product market is not profitable enough

to invest and thus decides to exit instead of launching the new product. The

exit option is conserved beyond the time of that potential investment in the

new product. Therefore, the firm can also exit the market of the new product45

irrevocably at any time. Previous literature (Kwon (2010), Matomaki (2013))

considering the option to exit in combination with deciding about the optimal

time to invest, found that it could be optimal to invest earlier when uncertainty

goes up. We extend these papers by letting the firm also determine the optimal

capacity size that should be acquired at the moment of investment, where the50

firm produces at capacity.

We derive the result that the optimal policy of the considered stopping

problem exists and is unique. In addition we show that as uncertainty goes up,

the firm invests in more capacity, which is an additional cause for investment

delay. Unlike Kwon (2010) and Matomaki (2013), we find that this generates55

monotonicity regarding the effect of uncertainty on investment timing: when

uncertainty goes up the firm invests later in a larger capacity level.

It turns out that innovative product market growth has a surprising effect in
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that the firm reduces investment size when the trend is higher. This is because

timing is leading: a firm is eager to invest early in a fast growing market. Then60

the innovative output price is still low, which leads to a lower optimal capacity.

An important characteristic of the new market is also in how strong output

price is negatively affected by quantity sold. In fact this quantity is equal to

the firm’s capacity level because the firm produces at capacity. If this effect is

larger the firm of course invests in a smaller capacity. Concerning timing things65

are not so clear. On the one hand, if quantity is strongly affecting price, the

profitability of the new market is relatively low, driving the firm to invest later.

On the other hand, in such a case the firm’s optimal investment size is small,

implying that investment costs are relatively low, which makes the firm decide

to invest earlier.70

This paper is organized as follows. We review related literature in Section 2.

Our model is presented in Section 3, whereas Section 4 contains a benchmark

model where the firm cannot exit. The comparative statics analysis of the

optimal policies is conducted in Section 5. Our main results are presented in

Section 6 and we conclude in Section 7. The appendix contains the proofs of75

all the propositions and a more in depth explanation of the calculus made in

several parts of the paper.

2. Related Literature

A number of existing research contributions have analyzed several aspects

of optimal technology adoption and exit decisions under uncertainty. There is80

extensive literature dealing with technology adoption (see Bridges et al. (1991)

for an early review). Many papers formulated adoption decisions of new tech-

nology as stopping time problems. We refer to Hoppe (2002) for an extensive

review of papers and Kwon (2010) for a review of more recent literature. We

use a real options framework to model the technology investment decision.85

Farzin et al. (1998) (see also Doraszelski (2001)) study the optimal timing of

technology adoption when technology choice is irreversible and the firm faces a
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stochastic innovation process modeled by a compound Poisson process. Besides

the uncertainty about the speed of the arrival the value of future improvements

is assumed to be uncertain as well. They allow for multiple investments in new90

technology. Contrasting the optimal decision rule derived under the real options

approach with that obtained under the net present value method, Farzin et al.

(1998) show that the former implies a more cautious and slower pace of adoption

than implied by the latter. This finding is in line with the conventional insight

of real options literature about the effect of uncertainty on investment decisions:95

as uncertainty increases, it is optimal to wait longer before investment, reflect-

ing the value of waiting (Dixit and Pindyck (1994)). In Farzin et al. (1998)

the improvement of new technology follows a compound Poisson process. Re-

cently, Hagspiel et al. (2015) extended Farzin et al. (1998) to a time-dependent

intensity rate of new arrivals. They show that larger variance can accelerate100

investment in case the arrival rate rises while it can decelerate investment in

case the arrival rate drops. Depending on whether the arrival rate is assumed to

change or be constant over time, Hagspiel et al. (2015) show that the optimal

technology adoption timing changes significantly.

Alvarez and Stenbacka (2001) characterize the optimal timing of when to105

adopt an incumbent technology, incorporating the opportunity to update this

technology to future superior versions. In their study a switch of technology is

assumed to generate a structural change in the cash flow, whereas the under-

lying stochastic process is assumed to be unchanged. They characterize how

the real option values depend on market uncertainty and on the uncorrelated110

technological uncertainty regarding future new generations of technology. They

show that in case the market uncertainty follows a geometric Brownian motion,

an increase in uncertainty related to market as well as technological uncertainty

delays optimal investment.

Some of the earliest work on entry and exit decisions goes back to Mossin115

(1968). McDonald and Siegel (1985), Brennan and Schwartz (1985) as well as

Dixit (1989) are among the pioneering works that evaluate those decisions in

the context of real options. McDonald and Siegel (1985) contemplate a case
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where operations can be suspended (mothballing decision), when operating prof-

its are negative, and resumed at no additional costs if they turn positive again.120

Brennan and Schwartz (1985) introduce a model to optimally decide on open-

ing, closing, and abandoning a mine. Dixit (1989) generalizes their framework

assuming that there might be costs related to switching between suspension and

an operating mode.

In our model the firm has the option to exit the market, which is considered125

to be an irreversible decision. This option to exit remains available also after

investment. To our knowledge, there are only two papers that consider an exit

option both before and after a possible investment. The first one to study this

problem was Kwon (2010). Kwon (2010) analyzes the impact of uncertainty on

a firm’s optimal investment and exit decisions given that profit is expected to130

decline over time, in case the firm does not invest. The firm has the opportunity

to make an investment that boosts the project‘s profit rate. He shows that it

can be optimal to invest even in a declining market, and exit if the profit rate

has deteriorated sufficiently.

(Matomaki, 2013, Article I) generalizes Kwon (2010), whose work relies on135

a Brownian motion with negative drift as underlying diffusion. He proves the

existence and uniqueness of an optimal strategy when the stochastic process

satisfies a general linear Itô diffusion with different drifts and volatilities before

and after the possible investment. Matomaki (2013) shows that for the case

of a geometric Brownian motion with the same volatilities before and after140

investment (i.e. under the same assumptions as in this work), the effect of

uncertainty on the investment threshold can be non-monotonic when the boost

on the profit flow upon investment is relatively large. Specifically, the investment

threshold first decreases and then increases in uncertainty.

We extend Kwon (2010) and Matomaki (2013) by also considering the size145

of the investment. This contrasts with the bulk of papers in the real options

literature that only considers the time to invest. However, an investment deci-

sion is not only about timing but also about how much to invest. The papers

that also take this into consideration, like Dixit (1993), Bar-Ilan and Strange
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(1999), Dangl (1999), and Chronopoulos et al. (2013), mainly find that when150

uncertainty goes up the firm not only delays the time to invest, but also in-

vests in a larger capacity. Hagspiel (2011) confirms this literature in that more

uncertainty results in both delayed investment timing and and larger capacity.

Recently, Huisman and Kort (2015) considered a framework where investing

firms also have to deal with competition while determining their optimal capac-155

ity choice. We differ from this work by including the exit decision and a change

in demand structure upon investment.

3. Model - Capacity, Timing

The firm currently operates in a declining market, producing an established

product, denoted by index 1. The quantity is denoted by q1, whilst the price

is denoted by p1. The relationship between the two is given by the following

inverse demand function:

p1(t) = θ1(t)(1− η1q1),

where η1 is a positive constant, and the process θ1 = {θ1(t), t ≥ 0} follows a

geometric Brownian motion, with dynamics

dθ1 = α1θ1dt+ σθ1dz.

The stochastic process {θ1 (t) , t}, being proportional to the output price, rep-

resents how demand develops over time. It is governed by two parameters. The160

parameter α1(< 0) stands for the general market trend. Its negativity results

in the declining market that we aim to model. How demand develops over time

is uncertain beforehand. This part is captured by the term σθ1dz, so that the

parameter σ represents the extent to which future demand is uncertain. By

varying σ we can analyze how different levels of uncertainty affect dynamic firm165

behavior. z denotes a Brownian motion process. We assume that the firm is

risk-neutral, and discounts against rate r, with r > α1. If this inequality does

not hold, by choosing a later point to invest or exit the discounted revenue
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stream could be made indefinitely larger. Thus waiting longer would always be

a better policy, and the optimum would not exist (see, e.g., Dixit and Pindyck170

(1994)).

The firm produces the established product with capacity K1. It holds that

q1 = K1, i.e. the firm always produces up to capacity. This assumption is often

referred to as the ‘market clearance assumption’ (see, e.g., Goyal and Netessine

(2007), Chod and Rudi (2005), Anand and Girotra (2007) and Deneckere et al.175

(1997)). Always producing up to capacity arise because firms may find it diffi-

cult to produce below capacity due to fixed costs associated with, for example,

labor, commitments to suppliers, and production ramp-up (Goyal and Netessine

(2007)). Even when firms can keep some capacity idle, a temporary suspension

of production is often costly. This is the case, for example, due to maintenance180

costs needed to avoid deterioration of the equipment. Therefore, in practice

firms often reduce prices to keep production lines running (see Goyal and Netessine

(2007), Anand and Girotra (2007) and Mackintosh (2003)). However, coun-

terexamples to the assumption of producing up to capacity also exist. Hagspiel et al.

(2014) showed that allowing the firm to produce below capacity leads to larger185

capacity investment while the effect on timing shows a tradeoff: on the one

hand the firm likes to invest earlier as the project is more valuable due to this

volume flexibility, but on the other hand the firm has an incentive to invest later

because investing in a larger capacity is more costly.

We distinguish between two types of cost. On the one hand the firm faces190

a fixed cost F . On the other hand it has to incur fixed unit production costs,

which are equal to a constant c.

The firm has the option to start producing an innovative product, denoted

by index 2, which requires an investment in production capacity. The capacity

of the new product is denoted by K2. The investment cost is a sunk cost and195

equal to δK2, with δ being a positive constant.

Because this innovative market grows faster than the old one, we assume

that the demand process change, and we denote by {θ2(t), t} the demand over
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time for this innovative market, with

dθ2 = α2θ2dt+ σθ2dz, (1)

where α2 > α1, since demand is higher for the new product. Still we impose200

that α2 < r in order for a finite investment time to be optimal. Furthermore,

if the firm decides to invest in this new market at time τ , then we assume that

θ2(0) = θ1(τ), meaning that the process {θ2(t), t} starts only to evolve after the

firm decides to invest in the new market, and its initial value is precisely the

demand level of the old market at the investment time.205

Denoting the price and the quantity of the new product by p2(.) and q2, re-

spectively, at the moment of the new product launch the firm’s demand function

changes into:

p2(t) = θ2(t)(1− η2q2), (2)

where the constant η2 is positive and such that η2 < η1. This inequality indicates

we have vertical product differentiation in the sense that the new product is210

qualitatively better than the established one so that profit is larger. As in the

first market, we assume that the firm produces up to capacity, i.e. q2 = K2.

The cost structure for the new product also changes after the new product

launch. While the fixed cost still equals F , there are no variable costs. We

motivate this assumption, on the one hand, by observing that in the digital world215

the unit cost of a product is most of the time very small. For many software

products like for example video games, costs of producing an additional copy

are very small or negligible. On the other hand our qualitative results carry over

to a framework where unit costs are lower but positive for the second innovative

product. Therefore, we set the unit cost of the second product to zero in order220

to save on notation.

Investing in the new product requires that the firm chooses the optimal time

as well as the optimal size of the capacity investment. It can be the case that

the new market is not profitable enough for an investment to be undertaken.

Since the established product market is declining, it can be optimal for the firm225

9



to exercise the option to exit the market. We also allow for the possibility to

exit the market after the investment in the innovative product has taken place.

Therefore, the optimal stopping problem can be stated as follows, given that

the current demand is θ:

V(θ) = sup
τ1

IE

[∫ τ1

0

e−rtΠ1(θ1(t))dt+ e−rτ1 max

{
0,

max
K2

(
sup

τ21{τ2>τ1}

IE

[∫ τ2

τ1

e−r(t−τ1)Π2(θ2(t− τ1),K2)dt

∣∣∣∣ θ2(0) = θ1(τ1)

]

−δK2

)}∣∣∣∣θ1(0) = θ

]
, (3)

meaning that until time τ1 the firm is producing, earning a profit flow Π1, that230

is a function of the demand process (θ1(t)). Time τ1 is the first time that the

firm decides either to invest in product 2 or to exit the market. If it is more

profitable for the firm to exit the market, then the decision problem ends. If

the firm decides to invest in the second market, then the instantaneous profit is

Π2, that depends on the new demand process (θ2(t)), until it decides to exit the235

market, which happens at time τ2. Note that in equation (3) we make use of

the assumption that the initial demand level in market 2 is equal to the demand

level in market 1 when the firm decides to invest (i.e., θ2(0) = θ1(τ1)).

Finally, we note that τ1 and τ2 are both stopping times, and as the decision

to exit market 2 has to be taken after deciding to invest in this market or either240

exiting, one must have τ1 < τ2 with probability one. Latter on, when we will

present the solution to the problem, we will define τ1 and τ2 formally as stopping

times.

To determine the value of investing in product 2, we first solve the subprob-

lem that is stated at the right hand side of the maximization in equation (3).245

Considering a specific current value for θ2(0) = θ the net expected discounted
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profit of investing in product 2 is given by

V2(θ,K2) = sup
τ2

IEθ

[∫ τ2

τ1

e−r(t−τ1)Π2(θ2(t− τ1,K2))dt

]
, (4)

= sup
τ2

IEθ

[∫ τ2−τ1

0

e−rtΠ2(θ2(t),K2)dt

]
,

= sup
τ̃

IEθ

[∫ τ̃

0

e−rtΠ2(θ2(t),K2)dt

]
,

where IEθ denotes the expectation with respect to the process θ2, when its initial

state is θ.

The optimal stopping problem in (4) is a standard problem. The instanta-250

neous profit for product 2, when the current demand level is θ, is given by:

Π2(θ,K2) = p2q2 − F = θ(1− η2K2)K2 − F.

Stating the optimal stopping problem in the form of a Bellman equation and

applying Ito’s Lemma yields the following partial differential equation that V2(.)

satisfies

1

2
σ2θ2

∂2V2(θ,K2)

∂θ2
+ α2θ

∂V2(θ,K2)

∂θ
− rV2(θ,K2) + θ(1− η2K2)K2 − F = 0.

Taking into account that there is an option to exit the market, standard calcula-255

tions (see for example Dixit and Pindyck (1994)) lead to the following expression

for the optimal value function V2:

V2(θ,K2) =


θK2(1−η2K2)

r−α2
− F

r +Gθβ4

2 , θ > θE2

0 θ ≤ θE2

(5)

where the exit threshold θE2 , as well as the specific expression of the unknown

G, can be easily derived applying value matching and smooth pasting at the

exit threshold:260

V2(θ,K2)|θ=θE2
= 0, (6)

∂V2(θ,K2)

∂θ

∣∣∣∣
θ=θE2

= 0. (7)

11



Solving these equations one can easily derive the exit threshold θE2
and the

expression for the parameter G:

θE2 =

(
β4

β4 − 1

)
F (r − α2)

rK2(1− η2K2)
,

G = θ−β4

E2

(
1

1− β4

)
F

r
.

Furthermore, β4 is the negative root of the quadratic equation 1
2σ

2β(β −

1) + α2β − r = 0. Moreover, we assume from now on that r > α2. We note

that we use the notation V2(θ,K2) in order to emphasize the dependence of the265

value function not only on the actual demand level θ but also on the capacity

of the new product K2.

Next, consider the situation before the investment. Let us first determine

the current instantaneous profits, and assume that the current demand is θ.

The instantaneous profit equals:270

Π1(θ) = θK1(1− η1K1)− cK1 − F.

Facing the declining profit stream in market 1, the firm has two possibilities,

either to exit the market or to undergo investment to bring a new product on

the market. We denote the exit threshold by θE1 and the investment threshold

by θI , respectively. The following proposition states that the optimal policy for

the stopping problem always exists and specifies the optimal value function of275

the firm.

Proposition 1 The optimal policy for the stopping problem of equation (3)

always exists. The optimal continuation region is D∗ = (θE1 , θI). It is optimal

to exit the market when θ ≤ θE1 and invest in the new product when θ ≥ θI .

The corresponding value of the firm in the stopping region is equal to Ω(θ) =280

max {0, V2(θ,K2)− δK2}.

The optimal value function is uniquely given by

V(θ) =

 V1(θ) for θ ∈ D∗,

Ω(θ) otherwise,
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where

V1(θ) =
θK1(1− η1K1)

r − α1
− cK1 + F

r
+A1θ

β1 +A2θ
β2 ,

with A1 and A2 being constants to be derived such that V (.) is continuous and

differentiable at the boundary of D, and β1(β2) is the positive (negative) root of

the quadratic equation 1
2σ

2β(β − 1) + α1β − r = 0.285

Given that the firm invests in the new product, the optimal production ca-

pacity has to be determined. To do so, we compute maxK2∈[0,∞] {V2(θI ,K2)− δK2}.

We can just compute the zero of ∂(V2(θI ,K2)−δK2)
∂K2

, and then check that

∂2(V2(θI ,K2)−δK2)
∂2K2

< 0.

To determine the optimal exit and investment policy we apply the following290

value matching and smooth pasting conditions:

V1(θ)|θ=θE1
= 0, (8)

∂V1(θ)

∂θ

∣∣∣∣
θ=θE1

= 0, (9)

V1(θ)|θ=θI
= V2(θ,K2)|θ=θI

− δK2, (10)

∂V1(θ)

∂θ

∣∣∣∣
θ=θI

=
∂V2(θ,K2)

∂θ

∣∣∣∣
θ=θI

. (11)

This leads to the results presented in Proposition 2.

Proposition 2 The optimal capacity K2 is implicitly given by the following

equation:

θI(1− 2η2K2)

r − α2
− δ +

∂G

∂K2
θβ4

I = 0, (12)

with295

∂G

∂K2
=

(
β4

β4 − 1

)
F

r
θ−β4−1
E2

∂θE2

∂K2
, (13)

∂θE2

∂K2
=

(
β4

β4 − 1

)
F (r − α2)

r

[
η2

K2(1− η2K2)2
− 1

K2
2 (1− η2K2)

]
. (14)

The investment and exit thresholds (θI and θE1) are then solutions of the fol-
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lowing equations:

θIK1(1− η1K1)

r − α1
− β1

(β1 − 1)

cK1

r
+

(β1 − β2)

(β1 − 1)
A2(θE1)θ

β2
I =

θIK2(1− η2K2)

r − α2

− β1

(β1 − 1)
δK2 +

(β1 − β4)

(β1 − 1)
Gθβ4

I , (15)

θIK1(1− η1K1)

r − α1
− β2

(β2 − 1)

cK1

r
+

(β2 − β1)

(β2 − 1)
A1(θE1)θ

β1
I =

θIK2(1− η2K2)

r − α2

− β2

(β2 − 1)
δK2 +

(β2 − β4)

(β2 − 1)
Gθβ4

I . (16)

with A1 and A2 given by:

A1 = θ1−β1
E1

(
1

β1 − β2

)[
(β2 − 1)

K1(1− η1K1)

r − α1
− β2θ

−1
E1

(
cK1 + F

r

)]
,

A2 = θ1−β2
E1

(
−1

β1 − β2

)[
(β1 − 1)

K1(1− η1K1)

r − α1
− β1θ

−1
E1

(
cK1 + F

r

)]
.

Finally, we are now in position to define formally the stopping times τ1 and

τ2 used in Equation (3):300

τ1 = inf{t : θ1(t) /∈ (θE1 , θI)}; τ2 = inf{t : θ2(t) < θE2} (17)

4. Benchmark Model

Allowing for the option to exit does not lead to explicit expressions for the

relevant thresholds and the investment capacity level. For these reasons we

consider a simplified model that is fully analytically tractable. This section

presents such a model, which will serve as a benchmark for the analysis of the305

model introduced in Section 3. In particular, we set the variable and fixed

production costs equal to zero, i.e., F = c = 0. The implication is that the

firm has no incentive to exit. Analogous to Proposition 1, we have the following

result.

Proposition 3 The optimal policy for the stopping problem of equation (3)310

when F = c = 0, always exists. It is optimal to invest in the new product when

θ ≥ θI . The corresponding value of the firm in the stopping region is equal to

Ω(θ) = [V2(θ,K2)− δK2], with V2(θ,K2) = θK2(1−η2K2)
r−α2

. The optimal value
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function is uniquely given by

V(θ) =

 V1(θ) for θ < θI ,

Ω(θ) otherwise,

where

V1(θ) =
θK1(1− η1K1)

r − α1
+A1θ

β1 ,

and β1 is the positive root of the quadratic equation 1
2σ

2β(β− 1)+α1β− r = 0.315

Furthermore, we have the following value matching and smooth pasting con-

ditions:

V1(θ) +Aθβ1 = V2(θ,K2)− δK2|θ=θI
, (18)

∂V1(θ)

∂θ
+ β1Aθ

β1−1 =
∂V2(θ,K2)

∂θ
− δK2

∣∣∣∣
θ=θI

, (19)

From these conditions and maximizing the value function V2 with respect to K2

we obtain:

θI(K2) =
β1

β1 − 1

δK2

K2(1−η2K2)
r−α2

− K1(1−η1K1)
r−α1

, (20)

K2(θ) =
1

2η2

(
1− δ(r − α2)

θ

)
. (21)

This leads to the investment rule presented in the following proposition.320

Proposition 4 The optimal capacity K2 and the investment threshold θI are

given by

K2 =
1 +

√
1 +

4η2(r−α2)(β2
1−1)K1(1−η1K1)
r−α1

2(β1 + 1)η2
, (22)

θI =
(β1 + 1)δ(r − α2)

β1 −
√
1 +

4η2(r−α2)(β2
1−1)K1(1−η1K1)
r−α1

. (23)

5. Comparative Statics

This section conducts a comparative statics analysis of the value of the firm

after the investment on the innovative product, V2, and the value of the firm325
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for the whole situation, V, respectively, as well as the exit threshold, θE2
, that

relates to exiting after the firm has invested in the innovative product. We also

present results concerning the probability of investment before exit, and the

expected time to undertake a decision in the established market. The proofs of

all propositions can be found in Appendix A.330

We first establish the convexity of V2, which is important for later compar-

ative statics results.

Proposition 5 The optimal return function V2 is convex in θ.

Next, we examine the comparative statics of V2 with respect to α2 and σ.

Proposition 6 The optimal return function V2 is non-decreasing in σ and335

strictly increasing in α2.

We employ these results to develop the comparative statics regarding the

exit threshold in the innovative product market with respect to σ, stated in the

following proposition.

Proposition 7 If the optimal capacity in market 2, K2, increases with the340

uncertainty then the exit threshold in market 2 (θE2) decreases in σ.

The non-increasing effect of uncertainty on the exit threshold can be ex-

plained as follows. When uncertainty is higher, the demand is more volatile.

Hence, the firm is less convinced that after it exits, the demand will not pick up

and increase again in the, possibly near, future. Therefore, the exit threshold345

is lower because the firm wants to keep the option alive for longer.

Regarding the analysis of the value of the firm, we again have to first establish

its convexity in order to present the comparative statics of Proposition 9.

Proposition 8 The optimal return function V is convex in θ.

Proposition 9 The value function of the firm V is increasing in σ and α1, and350

strictly increasing in α2.
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This result is intuitive: the value of the firm goes up if α2 increases, since

this implies that the output price grows faster after the firm has invested in the

innovative technology. The value of the firm also increases in σ because upside

potential is unlimited, while downside potential is limited by the output price355

being positive. The positive effect of α1 on the value of the firm can also be

justified: if θ’s trend is larger, then the output price of the established product

is expected to decrease at a lower pace.

Regarding the comparative statics of the investment and exit threshold of

the established product market, we need to resort to numerical analysis. The360

insights resulting from this analysis are presented in Section 6. Another crucial

result regards the point whether the firm will move on by investing in the in-

novative product or exiting. The next proposition provides an analytical result

regarding the probability that the firm will eventually stay active by innovating.

Proposition 10 The probability that the firm invests rather than exits, i.e. the

probability that the threshold θI is hit before θE1 , is given by

PI =

(
θ0
θE1

)1− 2α1
σ2

− 1(
θI
θE1

)1− 2α1
σ2

− 1

.

When demand is governed by a Brownian motion with drift, like in Kwon365

(2010), then the expected time to undertake the decision is always infinite (as

in this case the process is transient; see, for instance, Ross (1995)). In the case

of a geometric Brownian motion, however, the mean exit time from an interval

with compact closure is always finite (see, for instance, Lemma IV.2.1 in Bass

(1998)). In the next proposition we provide expected values for relevant times.370

Proposition 11 The expected time until the firm decides to invest in the inno-

vative product or exit the market (depending on which one occurs first) is given

by:

E[τ1] =
1

1
2σ

2 − α1

ln

[
θ0
θE1

]
−

1−
(

θ0
θE1

)1−2
α1
σ2

1−
(

θI
θE1

)1−2
α1
σ2

ln

[
θI
θE1

] ,
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if α1 < 1
2σ

2; otherwise it is infinite.

If the firm decides to invest in the second market, then the expected time in

the second market is equal to:

E [T2] =
ln
[

θI
θE2

]
1
2σ

2 − α2

,

if α2 < 1
2σ

2; otherwise it is infinite. Furthermore, the expected time that the

firm will stay in production is equal to

E[τ2] =
ln
[

θI
θE2

]
1
2σ

2 − α2


(

θ0
θE1

)1− 2α1
σ2

− 1(
θI
θE1

)1− 2α1
σ2

− 1



+
1

1
2σ

2 − α1

ln

[
θ0
θE1

]
−

1−
(

θ0
θE1

)1−2
α1
σ2

1−
(

θI
θE1

)1−2
α1
σ2

ln

[
θI
θE1

] .

6. Results375

This section studies effects of different parameters on the firm’s investment

decision. In our analysis we determined the effects for every parameter. How-

ever, in the following we choose to highlight the most important findings. To

do so we start out analyzing the effect of uncertainty. Then we continue by

establishing the effect of new market growth. Finally, we study the effect of the380

slope of the inverse demand curve.

6.1. Effect of uncertainty

The standard real options result says that the investment threshold goes up

with increasing uncertainty reflecting the value of waiting. However, results can

be different when realizing that upon investment the firm acquires an option385

to exit. In particular, Kwon (2010) obtains that when the profit boost upon

investment is sufficiently large, volatility has a negative effect on the invest-

ment threshold. Furthermore, Matomaki (2013) finds that when the underlying
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process follows a geometric Brownian motion with changing drift upon invest-

ment, the effect of volatility on the investment threshold is non-monotonic. It390

decreases for relatively low values of uncertainty and then increases.

The reason that the relationship between uncertainty and investment thresh-

old is ambiguous in the presence of an exit option, is that the value of the exit

option increases with uncertainty. This exit option is acquired when investing.

As a result the value of investment increases with uncertainty and therefore the395

firm may want to invest at a lower threshold level.

This section presents our findings regarding the effect of uncertainty on the

investment decision. First of all we present the result for our benchmark model,

where the absence of production costs implies that it is never optimal to exit.

In this case Proposition 12 proves analytically that the usual result that the400

investment threshold goes up with uncertainty holds.

Proposition 12 In absence of production costs (the benchmark model), the

optimal capacity K2 as well as the investment threshold θI are increasing in σ.

This is not surprising because it is the presence of the exit threshold that may

generate the opposite effect of a decreasing threshold under larger uncertainty.405

The proposition shows that in the benchmark model it also holds that increased

uncertainty implies that the firm invests in a larger capacity. Intuitively, this is

understandable, because when uncertainty goes up the typical aspect of asym-

metric option valuation comes in: while the downward potential is limited by

zero, the upward potential is unrestricted. In the later case the firm earns more410

because it is able to produce and sell a larger quantity. Note that investing in

more capacity raises investment costs, which gives an additional incentive to

delay the undertaking of the investment.

In our complete model, where the presence of (fixed) production costs makes

that exit can be optimal at some point in time, we are not able to obtain ana-415

lytical results concerning the effect of uncertainty. Tables 1 and 2, the former a

case of a declining innovative market and the latter a case of an increasing inno-

vative market, show that numerical results indicate that Proposition 12 carries
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Table 1: Effect of increasing uncertainty on the optimal investment and exit strategy consid-

ering negative drift for the innovative product demand. (Parameter Values: α1 = −0.02, α2 =

−0.01, r = 0.1, c = 0.1, η1 = 0.5, η2 = 0.3,K1 = 1.8, δ = 10, F = 0.02. In calculating E[τ1] we

choose θ0 =
(θE1

+θI )

2
.)

σ 0.05 0.1 0.15 0.2 0.25 0.3

K2 0.410 0.572 0.735 0.874 0.985 1.079

θI 1.458 1.675 1.967 2.308 2.691 3.119

θE1 1.057 0.947 0.827 0.714 0.614 0.526

θE2 0.051 0.035 0.026 0.021 0.017 0.015

PI 0.077 0.250 0.326 0.368 0.396 0.42

E[TE2 ] 298.04 257.09 203.58 156.65 121.43 97.04

E[τ1] 9.34 18.72 25.81 29.54 30.77 30.50

E[τ2] 32.28 83.10 92.14 87.21 78.84 70.82

Table 2: Effect of increasing uncertainty on the optimal investment and exit strategy consid-

ering negative drift for the innovative product demand. (Parameter Values: α1 = −0.02, α2 =

0.01, r = 0.1, c = 0.1, η1 = 0.5, η2 = 0.3,K1 = 1.8, δ = 10, F = 0.02. In calculating E[τ1] we

choose θ0 =
(θE1

+θI )

2
.)

σ 0.1 0.15 0.2 0.25 0.3

K2 0.459 0.651 0.810 0.937 1.040

θI 1.242 1.477 1.752 2.057 2.392

θE1 0.863 0.750 0.643 0.548 0.466

θE2 0.038 0.026 0.020 0.016 0.013

PI 0.328 0.359 0.384 0.405 0.421

E[TE2
] ∞ 3244.3 449.46 228.69 147.00

E[τ1] 12.70 20.41 25.16 27.33 27.82

E[τ2] ∞ 1184.06 197.89 119.86 90.07
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over to this case. This implies that the effect of having an option to exit, which

may result in a lower investment threshold when uncertainty goes up, is not420

visible here. Apparently, the additional incentive to delay investment, caused

by the fact that the firm wants to invest in a larger capacity in a more uncertain

economic environment, dominates the negative effect on the investment thresh-

old induced by the existence of the option to exit. We conclude that, despite

the presence of the option to exit, allowing for capacity optimization restores425

the monotonic relationship between uncertainty and the investment threshold,

which was lost in Kwon (2010) and Matomaki (2013).

Since in our model the uncertainty follows a geometric Brownian motion

process, we can determine the effect of uncertainty on investment and exit timing

(see the expressions for the expected time to invest or to exit in market 1, the430

expected time the firm spends in market 2, and the expected time that the

firm is producing, in Proposition 11). The obtained results show that threshold

effects do not directly translate in conclusions regarding timing. To see this,

first note that the exit threshold θE2 is decreasing with uncertainty. However,

Tables 1 and 2 show that the firm is expected to exit earlier in a more uncertain435

environment.

6.2. Effect of new market growth

In the benchmark model we can analytically prove the following result.

Proposition 13 In absence of production costs (the benchmark model), the

investment threshold, θI , and the optimal capacity in the second market, K2,440

decrease with α2.

Hence, we obtain the at first sight surprising result that, when the potential

profitability of the innovative product market is higher, it is optimal for the firm

to invest in less capacity. The point is that the firm is more eager to invest in

this case. This implies it will invest at a lower threshold level thus when the445

output price for the new product is still low. Therefore, it is optimal to invest

in smaller capacity.
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Table 3: Effect of increasing drift of the second market on the optimal investment and exit

strategy. (Parameter Values: α1 = −0.02, σ = 0.1, r = 0.1, c = 0.1, η1 = 0.5, η2 = 0.3,K1 =

1.8, δ = 10, F = 0.02. In calculating E[τ1] we choose θ0 =
(θE1

+θI )

2
.)

α2 -0.02 -0.015 -0.01 0.00 0.01

K2 0.629 0.602 0.5742 0.517 0.459

θI 1.928 1.800 1.678 1.450 1.242

θE1 0.959 0.954 0.947 0.918 0.863

θE2
0.034 0.035 0.035 0.037 0.038

PI 0.211 0.230 0.250 0.291 0.328

E[TE2 ] 161.46 197.50 257.41 735.63 ∞

E[τ1] 22.26 20.51 18.78 15.49 12.70

E[τ2] 56.36 65.90 83.07 229.56 ∞

Numerical results, as presented in Table 3, indicate that this result carries

over to the whole model, where the presence of costs makes exit worthwhile. This

table also shows that, in case the firm has not invested yet, the exit threshold450

is lower when the expected growth in the new market is higher. This is because

in the latter case the firm has a more profitable investment option, which also

explains that the probability that the investment takes place increases.

Considering the exit threshold in the new market in Table 3, we conclude

that it increases with α2. The reason is that capacity decreases with α2, which455

leads to a lower profit margin. To see this, note that instantaneous profit,

θ(1 − η2K2)K2 − F , admits its maximum value for K2 = 1
2η2

(equalling 1.67

for the specific example in Table 3). If α2 increases, K2 decreases and in fact

the instantaneous profit moves away from its maximum value. This gives an

incentive to exit at a higher threshold. It may seem that the firm exits earlier460

when α2 is higher. However, threshold values do not give perfect information

about timing. This is exemplified by the fact that, when looking at the expected

time to exit, we obtain the logical result that the firm is expected to exit later
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when new market growth is higher2.

6.3. Effect of the slope of the inverse demand curve465

Again we have an analytical result for the benchmark model without pro-

duction costs.

Proposition 14 In absence of production costs (the benchmark model), the

investment threshold, θI , increases with η2 and the optimal capacity in the second

market, K2, decreases with η2.470

A larger value of η2 means that quantity has a larger negative effect on the

price in the new market. Therefore, the firm invests at a larger threshold value

when η2 is larger. Quantity having a larger negative effect on price implies that

less capacity is needed. Hence, capacity decreases in η2, despite the fact that

the investment is undertaken at a larger threshold level.475

Table 4: Effect of increasing η2 on the optimal investment and exit strategy. (Parameter

Values: α1 = −0.02, α2 = −0.01, σ = 0.1, r = 0.1, c = 0.1, η1 = 0.5,K1 = 1.8, δ = 10, F =

0.02. In calculating E[τ1] we choose θ0 =
(θE1

+θI )

2
.)

η2 0.4 0.3 0.2 0.1 0.05

K2 0.481 0.574 0.764 1.340 2.491

θI 1.788 1.678 1.584 1.502 1.465

θE1 0.956 0.947 0.929 0.891 0.846

θE2 0.043 0.035 0.026 0.014 0.008

PI 0.232 0.250 0.263 0.267 0.258

E[TE2 ] 248.20 257.41 274.19 309.50 349.92

E[τ1] 20.28 18.78 17.69 17.38 18.12

E[τ2] 77.97 83.07 89.80 99.95 108.29

2In fact, the continuation region decreases with α2 but the firm is expected to stay longer

in that region.
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Table 5: Effect of increasing η2 on the optimal investment and exit strategy. (Parameter

Values: α1 = −0.02, α2 = 0.01, σ = 0.1, r = 0.1, c = 0.1, η1 = 0.5,K1 = 1.8, δ = 10, F = 0.02.

In calculating E[τ1] we choose θ0 =
(θE1

+θI )

2
.)

η2 0.4 0.3 0.2 0.1 0.05

K2 0.370 0.459 0.640 1.198 2.334

θI 1.278 1.242 1.210 1.183 1.174

θE1 0.889 0.863 0.829 0.774 0.722

θE2 0.055 0.038 0.027 0.014 0.007

PI 0.328 0.328 0.322 0.304 0.280

E[TE2 ] ∞ ∞ ∞ ∞ ∞

E[τ1] 12.70 12.70 13.14 14.54 16.32

E[τ2] ∞ ∞ ∞ ∞ ∞

For the complete model we have numerical results that are presented in

Table 4 for α2 < 0 and in Table 5 for α2 > 0. The result from the benchmark

model does not completely carry over. Although Table 4 is in accordance with

the proposition and in Table 5 we still have that capacity increases when η2

becomes smaller, Table 5 also shows that the result of Proposition 14 is not valid480

anymore with respect to the investment threshold effects in case of production

costs. In particular, we see that the investment threshold decreases with η2

for small enough η2. Apparently, capacity is leading here in the sense that an

increased capacity makes that investment costs are higher so that it would be

valuable to have a higher output price on the new market, and thus a higher485

investment threshold, at the moment of investment. Also, please note that

comparing the first rows of Tables 4 and 5 shows that a larger trend in the

new market results in a lower optimal capacity investment, which confirms the

analysis in the previous section.
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7. Conclusions490

The paper studies a setting where a firm, currently operating in a declining

established product market, has the option to invest and produce a new inno-

vative product. We also include options to exit before and after the innovative

investment.

The investment decision involves deciding about timing and about capacity495

size. In general the connection is that later timing implies investing in a mar-

ket with higher output price, where it results in a larger optimal capacity size

upon investment. We find that investment timing is leading where capacity size

adjusts, in case we vary growth of the innovative product market. Consider a

situation where the innovative product market is expected to grow faster. At500

first sight one would think this calls for a larger capacity. However, it turns out

capacity will be smaller because the firm invests sooner in a market with larger

growth.

With uncertainty it is the other way round. If capacity size is fixed, Kwon

(2010) and Matomaki (2013) found that the effect of uncertainty on the invest-505

ment threshold is ambiguous. We numerically show that introducing the capac-

ity decision results in monotonicity where the investment threshold always goes

up when the economic environment becomes more uncertain. This is caused by

the fact that larger uncertainty calls for a larger capacity level, which gives an

incentive for the firm to invest later, meaning a larger investment threshold. So510

here investment size is leading where investment timing adjusts.

Another characteristic important for the profitability of the new market is

the extent to which quantity negatively influences price. If this effect is large,

the profitability of the innovative market is low, and the firm invests later in

less capacity. However, the fact that the size of the investment is low could also515

result in earlier investment. Then capacity is leading. We found that this could

occur in an innovative product market with positive trend and relatively low

effect of quantity on price.

This paper is one of the first fruits of a new research agenda that aims
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to enrich the real options literature, currently mainly focusing on investment520

timing, by determining also the investment size. Here it is important to assess

which part of the decision is leading: timing or size. Another important topic

is to include competition (an early contribution is Huisman and Kort (2015)).

Appendix A. Proofs

Appendix A.1. Proof of Proposition 1525

Assume that V1(.) stated in the proposition is a candidate for the optimal

value function. In the following we verify that V1(.) indeed satisfies all the

sufficient conditions for being the optimal value function specified in Theorem

10.4.1 of Øksendal (2010). Oksendal’s ϕ(.), f(.) and g(.) are here given by V1(.),

Π1(.) and V2(θ,K2)− δK2, respectively. As V = ℜ+
0 and D = (θE1 , θI), it holds530

that ∂D = {θE1 , θI}.

Conditions (iii), (iv), (viii) and (ix) hold trivially because θ follows a geo-

metric Brownian motion. V1(.) is continuously differentiable in ∂D∗ since we

impose the value matching and smooth pasting conditions; Ω is also twice con-

tinuously differentiable (∂D∗)c, which proves that conditions (i) and (v), related535

with continuity, hold. Similarly, condition (ii) holds by definition of the value

function V1 (defined as the maximum).

Moreover, we introduce the following partial differential operator L = ∂
∂t +

α1θ
∂
∂θ + 1

2σ
2θ2 ∂2

∂θ2 . Since the time-dependence of the return function is only

through the discount factor e−rt, the infinitesimal generator can be replaced by540

L = −r + α1θ
∂

∂θ
+

1

2
σ2θ2

∂2

∂θ2
.

To verify that (vi) and (vii) hold, we consider one case of V1, while for the

other cases similar calculations will apply:

V1(θ) =
θK1(1− η1K1)

r − α1
− cK1 + F

r
+A1θ

β1 +A2θ
β2 .

Therefore condition (vi) holds, since LV1(θ) + Π1(θ) ≤ 0 on θ ∈ ℜ+
0 \ D̄.

And condition (vii) holds because LV1(θ) + Π1(θ) = 0 for θ ∈ D. �
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Appendix A.2. Proof of Proposition 2545

Follows automatically from the derivation in Section 3. �

Appendix A.3. Proof of Proposition 3

See Proposition 1 for the case that F = c = 0. �

Appendix A.4. Proof of Proposition 4

Standard calculations analogous to Proposition 2 lead to the result. �550

Appendix A.5. Proof of Proposition 5

By straightforward derivation, we get

V ′′
2 (θ) =

0, θ ≤ θE2

β4(β4 − 1)Gθβ4−2, θ > θE2

. (A.1)

Hence, as G > 0, the convexity follows.

Appendix A.6. Proof of Proposition 6

Let µ > 0 and denote by V2(θ, α2) the value function V2 with the dependence555

on the drift of the process here denoted by α2.

V2(θ, α2) = sup
τ̃

IEθ2(0)

[∫ τ̃

0

e−rtΠ2

(
θe

((
α2−σ2

2

)
t+σzt

))
dt

]
,

< sup
τ̃

IEθ2(0)

[∫ τ̃

0

e−rtΠ2

(
θe

((
α2+µ−σ2

2

)
t+σzt

))
dt

]
, (A.2)

≤V2(θ, α2 + µ), (A.3)

where inequality (A.2) follows from the fact that

e

((
α2−σ2

2

)
+σzt

)
< e

((
α2+µ−σ2

2

)
+σzt

)
with probability 1 and Π2 is non-decreasing

in θ. The inequality is strict since θ2(0) > θE2 , and therefore τ̃ > 0. Moreover,

as τ̃ is the optimal stopping time for the problem with drift α2 it is suboptimal560

for the problem with drift α2 + µ, which proves inequality (A.3).

27



Concerning the non-decreasing behavior of V2 as a function of the volatility

σ, we refer to Ekstrom (2004), page 273, where in a note he refers that for

convex contract functions the option price is non-decreasing in the volatility

when the stock price follows a geometric Brownian motion. This result holds in565

our case as V2 is convex in θ (see Proposition 5). �

Appendix A.7. Proof of Proposition 7

In the following we present an auxiliary result that will be used for the proof

of Proposition 7.

Lemma 1 The negative root of the characteristic equation 1
2σ

2β(β−1)+α2β−570

r = 0, hereby denotes by β4, increases with σ.

Proof of Lemma 1

This result follows from Corollary 3 of Alvarez (2003).

�
Proceeding with the proof of Proposition 7, we know that the exit threshold575

in market 2 is given by

θE2 =

(
β4

β4 − 1

)
F (r − α2)

r

1

K2(1− η2K2)
. (A.4)

We want to show the effect of increasing σ on θE2 . Therefore, we calculate the

derivative of θE2
w.r.t σ:

dθE2

dσ
=

[(
1

1− β4

)
F (r − α2)

r

1

K2(1− η2K2)

]
[(

β′
4

β4 − 1

)
+ β4

(
K ′

2(1− 2η2K2)

K2(1− η2K2)

)]
, (A.5)

where it is easy to see that the first part of the right hand side is positive.

Therefore, the sign depends on the second term, which we denote by I, i.e.580

I :=

(
−β′

4

1− β4

)
+ β4

(
K ′

2(1− 2η2K2)

K2(1− η2K2)

)
. (A.6)

Given that K2 < 1
2η2

(this holds because K2 = 1
2η2

maximizes the revenue

stream, so taking into account investment cost will result in a lower optimal K2

level) and ∂K2

∂σ > 0, it holds that I < 0. This means that
dθE2

dσ < 0.

�
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Appendix A.8. Proof of Proposition 8585

First we note that the profit function, Π1(.), is a convex function in θ.

In a next step, we define

F (θ0) = IE

[∫ τ

0

e−rtΠ1 (θ1(t)) dt

∣∣∣∣ θ1(0) = θ0

]
.

Then F (θ0) is a convex function in θ0 by the same reasoning that we used for

equality (A.1).

Finally, taking into account that the maximization of V2 over K2 preserves590

the convexity of the function, as well as the maximum and the sum of two

convex functions, then

V(θ0) = sup
τ̃

IEθ0

[∫ τ̃

0

e−rtΠ1(θ1(t))dt+ e−rτ̃ max

{
0,max

K2

(V2(θ1(τ̃),K2)− δK2)

}]
,

is also a convex function. �

Appendix A.9. Proof of Proposition 9

By Proposition 6, V2 is strictly increasing in α2, and since α2 affects only595

market 2, V is also strictly increasing in α2.

Denote by V(θ, α1) the value function V with the dependence on the drift of

the process in market 1, here denoted by α1. Let µ > 0 (satisfying α1+µ < α2)

and τ̃(α1) be a stopping time adapted to the geometric Brownian motion with

drift α1. Then600

V(θ0, α1) = sup
τ̃(α1)

IEθ0

[∫ τ̃(α1)

0

e−rtΠ1

(
θ0e

((
α1−σ2

2

)
t+σzt

))
dt

+ e−rτ̃(α1) max

{
0,max

K2

(
V2(θ(τ̃(α1)), α2)− δK2

)}]
(A.7)

≤ sup
τ̃(α1)

IEθ0

[∫ τ̃(α1)

0

e−rtΠ1

(
θ0e

((
α1+µ−σ2

2

)
t+σzt

))
dt

+ e−rτ̃(α1) max

{
0,max

K2

(
V2(θ(τ̃(α1))e

µτ̃(α1) , α2)− δK2

)}]
(A.8)

≤V(θ0, α1 + µ), (A.9)
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where in (A.8) we use the fact that Π1 is non-decreasing and that V2 is non-

decreasing in the initial value θ(τ̃(α1)) because Π2 is also non-decreasing in θ.

Finally in (A.9) the sub-optimality of τ̃(α1) is used.

In order to prove the behavior of V as a function of σ, we follow the ”inter-

esting consequence” of Theorem 4 of Alvarez (2003). Consider d(x) = (r−α2)x,605

which is an increasing function on ℜ+; then all the conditions of Theorem 4 of

Alvarez (2003) are satisfied.

Let ν(θ0) = Eθ0
[
e−rτ̃f(θ(τ̃))

]
, where in our case f denotes the return of

stopping at τ̃ (which includes the return of max{0, V2}). Since max{0, V2} is

non-decreasing in σ, as proved before, we conclude based on Theorem 4 of610

Alvarez (2003) that V is a non-decreasing function of the volatility parameter

σ. �

Appendix A.10. Proof of Proposition 10

Let θ(t) denote the demand level at time t, with t < τ1, so that the drift

coefficient of the diffusion equation of θ is α1. Therefore it follows that θ(t) is

given by:

θ(t) = θ0 exp

{(
α1 −

σ2

2

)
t+ σW (t)

}
.

We wish to have θ(t) > θI before θ(t) < θE1 :

θ(t) > θI ⇔ z(t) >
1

σ
ln

(
θI
θ0

)
− 1

σ

(
α1 −

σ2

2

)
t,

θ(t) < θE1 ⇔ z(t) <
1

σ
ln

(
θE1

θ0

)
− 1

σ

(
α1 −

σ2

2

)
t.

By Theorem 4.1 of Anderson (1960), we have that if {Y (t), t} is a Wiener

Process, if γ1 > 0, γ2 < 0, δ1 = δ2 ̸= 0, then the probability that Y (t) ≥ γ1+ δ1t

for a smaller t than any t for which Y (t) ≤ γ2 + δ2t is:

PI =
e−2γ2δ1 − 1

e2(γ1−γ2)δ1 − 1
.
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For our case we have that

γ1 =
1

σ
ln

(
θI
θ0

)
> 0,

γ2 =
1

σ
ln

(
θE1

θ0

)
< 0.

δ1 = − 1

σ

(
α1 −

σ2

2

)
.

Therefore:

e−2γ2δ1 = exp

{
ln

(
θE1

θ0

)(
2
α1

σ2
− 1
)}

=

(
θE1

θ0

)2
α1
σ2 −1

,

e2(γ1−γ2)δ1 = exp

{
− ln

(
θI
θ0

/
θE1

θ0

)(
2
α1

σ2
− 1
)}

=

(
θE1

θI

)2
α1
σ2 −1

.

So

PI =

(
θ0
θE1

)1−2
α1
σ2

− 1(
θI
θE1

)1−2
α1
σ2

− 1

.

�

Appendix A.11. Proof of Proposition 11615

In order to prove the expression for the expected time spent in market 1,

that we denote by E[τ1], we use the example in Section 10.9 of Wilmott (2006),

with A given by α1 and B given by σ2, as the region Ω in our case is just the

interval [θE1 , θI ] (a time homogeneous region).

The expected time in market 2, E[T2], is a standard result for the geometric620

Brownian motion (see, for instance, Ross (1995)).

Finally, as

τ2 = τ1 +

T2 if the firm decided to invest in the second market,

0 if the firm decided to exit the first market ,

then E[τ2] = E[τ1] + E[T2]PI . Therefore, the result follows from the proba-

bility of investment derived in the previous proposition and from the previous

expressions regarding the expected times in the first market and in the second

market.625

�
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Appendix A.12. Proof of Proposition 12

First, we will prove that the optimal capacity for the benchmark model as

presented in equation (22) is increasing in the volatility parameter σ.

Denoting a = 4η2(r−α2)K1(1−η1K1)
r−α1

and b = 2η2, we have630

K2 = K2(σ) =
1 +

√
1 + a(β2

1 − 1)

b(β1 + 1)
, (A.10)

where β1 depends on σ. In order to ease the notation, we omit dependencies in

σ in the following.

The derivative of K2 with respect to σ is given by

∂K2

∂σ
=

[
1 + a(β2

1 − 1)
]− 1

2 aβ1β
′
1(β1 + 1)− β′

1(1 +
√
1 + a(β2

1 − 1)

(β1 + 1)2
,

where β′
1 is the short-hand notation for the first order derivative of β1 (with

respect to σ).

As the denominator of ∂K2

∂σ is positive, we proceed to analyze the sign of the

numerator, which we can re-write as follows

f(σ) = aβ′
1β1

[
1 + a(β2

1 − 1)
]− 1

2 (β1 + 1)− β′
1

(
1 +

√
1 + a(β2

1 − 1)

)
= β′

1

[
aβ1(β1 + 1)√
1 + a(β2

1 − 1)
−
(
1 +

√
1 + a(β2

1 − 1)

)]
.

As β′
1 < 0 (see (Dixit and Pindyck, 1994, Chapter 5)), it follows that f(σ) ≥ 0

if and only if

aβ1(β1 + 1)√
1 + a(β2

1 − 1)
−
(
1 +

√
1 + a(β2

1 − 1)

)
< 0,

aβ1(β1 + 1)√
1 + a(β2

1 − 1)
− 1−

√
1 + a(β2

1 − 1) < 0,

aβ1(β1 + 1)−
√
1 + a(β2

1 − 1)− (1 + a(β2
1 − 1)) < 0,

(β1 + 1)2a(a− 1) < 0.

In order for this inequality to hold, it needs to hold that a < 1, which is635

equivalent to have

K1(1− η1K1)

r − α1
<

1

4η2(r − α2)
. (A.11)
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This condition has to hold in order for θI in equation (23) to be an admissible

solution.

Using a similar procedure, we next prove that the investment threshold, θI ,

is also increasing in σ. The investment threshold can be stated as a function of640

K2 as follows:

θI(K2) =

(
β1

β1 − 1

)[
δK2

K2(1−η2K2)
r−α2

− K1(1−η1K1)
r−α1

]
.

Note that
(

β1

β1−1

)
is increasing in σ (Dixit and Pindyck (1994)). Therefore, we

just need to prove that the second part of the right hand side of equation (A.12)

is also increasing in σ. Due to the previous result that ∂K2

∂σ > 0 holds, it remains

to show that h(K2) is increasing in K2. So let

h(K2) =
δK2

K2(1−η2K2)
r−α2

− K1(1−η1K1)
r−α1

.

The derivative with respect to K2 is equal to(
K2(1−η2K2)

r−α2
− K1(1−η1K1)

r−α1

)
−K2

[
(1−2η2K2)

r−α2

]
(

K2(1−η2K2)
r−α2

− K1(1−η1K1)
r−α1

)2 . (A.12)

As the denominator is always positive, h(.) increases in K2 if and only if:

η2K
2
2

r − α2
− K1(1− η1K1)

r − α1
> 0.

In the following we show that this condition always holds. To simplify notation

we set X = K1(1−η1K1)
r−α1

and Y = 1
4η2(r−α2)

. Note that X < Y holds. Therewith,645

condition (A.13) can be rewritten as

1 +

√
1 +

(β2
1 − 1)X

Y
> (β1 + 1)

√
X

Y
. (A.13)

Straightforward calculations show that condition (A.13) is equivalent to X < Y .

�

Appendix A.13. Proof of Propositions 13 and 14

Considering the expressions for K2 and θI in equations (22) and (23), trivial650

computations show that both are decreasing in α2.
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It is clear from the expression of θI (equation (23)) that the investment

threshold is increasing in η2. With respect to the dependence of K2 on η2 we

derive:

∂K2

∂η2
=

(β2
1 − 1)K1(r − α2)(1− η1K1)

(1 + β1)(r − α1)η2

√
1 +

4(β2
1−1)(r−α2)η2K1(1−η1K1)

(r−α1)

−
1 +

√
1 +

4(β2
1−1)(r−α2)η2K1(1−K1η1)

(r−α1)

2η22(1 + β1)
. (A.14)

We want to show that ∂K2

∂η2
< 0. Multiplying ∂K2

∂η2
by the strictly positive term

A =

√
1 +

4(β2
1 − 1)(r − α2)η2K1(1− η1K1)

(r − α1)
,

gives655

A
∂K2

∂η2
= −

1 +
2(β2

1−1)(r−α2)η2K1(1−η1K1)
(r−α1)

+
√
1 +

4(β2
1−1)(r−α2)η2K1(1−η1K1)

(r−α1)

2(1 + β1)η22
,(A.15)

which is negative for the considered parameter ranges.

�

References

Alvarez LH. On the properties of r-excessive mappings for a class of diffusions.

The Annals of Applied Probability 2003;13(4):1517–33.660

Alvarez LH, Stenbacka R. Adoption of uncertain multi-stage technology

projects: a real options approach. Journal of Mathematical Economics

2001;35:71–97.

Anand KS, Girotra K. The strategic perils of delayed differentiation. Manage-

ment Science 2007;53(5):697–712.665

Anderson TW. A modification of the sequential probability ratio test to reduce

the sample size. The Annals of Mathematical Statistics 1960;31(1):165–97.

Bar-Ilan A, Strange WC. The timing and intensity of investment. Journal of

Macroeconomics 1999;21:57–77.

34



Bass RichardF. Diffusions and elliptic operators. Springer Science & Business670

Media, 1998.

Brennan MJ, Schwartz ES. Evaluating natural resource investments. Journal

of Business 1985;58(2):135–57.

Bridges E, Coughlan AT, Kalish S. New technology adoption in an innovative

marketplace: Micro- and macro-level decision making models. International675

Journal of Forecasting 1991;7(3):257 –70.

Chod J, Rudi N. Resource flexibility with responsive pricing. Operations Re-

search 2005;53(3):532–48.

Chronopoulos M, De Reyck B, Siddiqui A. The value of capacity sizing un-

der risk aversion and operational flexibility. Engineering Management, IEEE680

Transactions on 2013;60(2):272–88.

Dangl T. Investment and capacity choice under uncertain demand. European

Journal of Operational Research 1999;117:415–28.

Deneckere R, Marvel HP, Peck J. Demand uncertainty and price maintenance:

Markdowns as destructive competition. The American Economic Review685

1997;87(4):619–41.

Dixit AK. Entry and exit decisions under uncertainty. Journal of Political

Economy 1989;97(3):620–38.

Dixit AK. Choosing among alternative discrete investment projects under un-

certainty. Economics Letters 1993;41:265–8.690

Dixit AK, Pindyck RS. Investment under Uncertainty. Princeton University

Press, 1994.

Doraszelski U. The net present value method versus the option value of waiting:

A note on farzin, huisman & kort (1998). Journal of Economic Dynamics and

Control 2001;25(8):1109–15.695

35



Ekstrom E. Properties of american option prices. Stochastic Processes and their

Applications 2004;114:265–78.

Farzin YH, Huisman KJ, Kort PM. Optimal timing of technology adoption.

Journal of Economic Dynamics and Control 1998;22(5):779–99.

Goyal M, Netessine S. Strategic technology choice and capacity investment700

under demand uncertainty. Management Science 2007;53(2):192–207.

Hagspiel V. Flexibility in Technology Choice: A Real Options Approach. Ph.D.

thesis; Tilburg University; 2011.

Hagspiel V, Huisman K, Kort PM. Production flexibility and capacity invest-

ment under demand uncertainty. Working Paper 2014;:1–45.705

Hagspiel V, Huisman KJ, Nunes C. Optimal technology adoption when the

arrival rate of new technologies changes. European Journal of Operational

Research 2015;243(3):897 – 911.

Hoppe H. The timing of new technology adoption: Theoretical models and

empirical evidence. The Manchester School 2002;70(1):56–76.710

Huisman KJ, Kort PM. Strategic capacity investment under uncertainty. The

RAND Journal of Economics 2015;46(2):376–408.

Karatzas I, Shreve SE. Brownian Motion and Stochastic Calculus. 2nd ed.

Springer-Verlag, 1991.

Kwon HD. Invest or exit? Optimal decisions in the face of a declining profit715

stream. Operations Research 2010;58(3):638–49.

Mackintosh J. Ford learns to bend with the wind. Financial Times 2003;.

Matomaki P. On two-sided controls of a linear diffusion. Ph.D. thesis; Turku

School of Economics; 2013.

McDonald R, Siegel D. Investment and the valuation of firms when there is an720

option to shut down. International Economic Review 1985;26:331–49.

36



Mossin J. An optimal policy for lay-up decisions. Swedish Journal of Economics

1968;70(2):170 –7.

Øksendal B. Stochastic Differential Equations: An Introduction with Applica-

tions (Universitext). 6th ed. Springer, 2010.725

Ross SM. Stochastic Processes (Wiley Series in Probability and Statistics).

Wiley, 1995.

Wilmott P. Paul Wilmott on Quantitative Finance. 2nd ed. John Wiley and

Sons, Ltd., 2006.

37


